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Abstract
SNPs&GO is a machine learning method for predicting the association of single amino acid varia-

tions (SAVs) todisease, consideringprotein functional annotation. Themethod is a binary classifier

that implements a support vectormachine algorithm to discriminate between disease-related and

neutral SAVs. SNPs&GO combines information from protein sequencewith functional annotation

encoded by gene ontology (GO) terms. Tested in sequence mode on more than 38,000 SAVs from

the SwissVar dataset, our method reached 81% overall accuracy and an area under the receiving

operating characteristic curve of 0.88 with low false-positive rate. In almost all the editions of the

Critical Assessment of Genome Interpretation (CAGI) experiments, SNPs&GO ranked among the

most accurate algorithms for predicting the effect of SAVs. In this paper, we summarize the best

results obtained by SNPs&GO on disease-related variations of four CAGI challenges relative to

the following genes: CHEK2 (CAGI 2010), RAD50 (CAGI 2011), p16-INK (CAGI 2013), and NAGLU

(CAGI 2016). Result evaluation provides insights about the accuracy of our algorithm and the rel-

evance of GO terms in annotating the effect of the variants. It also helps to define good practices

for the detection of deleterious SAVs.
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1 INTRODUCTION

Large-scale genomic experiments are generating a huge amount of

genetic variants whose effect is still unknown (Capriotti, Nehrt, Kann,

& Bromberg, 2012). Among all possible genetic alterations, single-

nucleotide variants (SNVs) are the most frequent type of variations

between individual genomes (Durbin et al., 2010) and nonsynonymous

SNVs (inducing single amino acid variants in the encoded protein)

are the variant class most frequently associated with disease. Despite

the improvements in the characterization of the human genome, the

relationship between genotype and phenotype is still an open prob-

lem. In this context, the development of more accurate methods

for the detection and annotation of SNVs becomes one of the key

challenges for personalized medicine (Fernald, Capriotti, Daneshjou,

Karczewski, & Altman, 2011). During the last few years, sev-

eral initiatives have been established to promote, disseminate, and

evaluate research in the field of disease-associated phenomics.

International consortiums have collected data from thousands of indi-

viduals for defining functional regions of the human genome (Durbin

et al., 2010; ENCODE Project Consortium, 2012) and for characteriz-

ing the landscape of genetic alterations associated to human patholo-

gies (Cancer Genome Atlas Research Network, et al., 2013; Interna-

tional Cancer Genome Consortium, et al., 2010). At the same time,

many meetings contributed to the dissemination of the increasing

number of computational methods (Niroula & Vihinen, 2016) for the

identification and annotation of the genetic variants (Bromberg, Capri-

otti, & Carter, 2016; Oetting, 2011). Finally, in silico experiments with

different computational challenges were organized to evaluate the

available tools for predicting the impact of genetic variants and/or

the association between genotype and phenotype (Brownstein et al.,

2014; Saez-Rodriguez et al., 2016). Among the computational exper-

iments, the Critical Assessment for Genome Interpretation (CAGI)

provided several blind datasets for testing the accuracy of the pre-

dictive algorithms (https://genomeinterpretation.org/). The Bologna

Biocomputing Group and the BioFolD Unit, as active members of

this community, participated in all the CAGI editions since 2010 sub-

mitting predictions for many challenges adopting SNPs&GO (Cal-

abrese, Capriotti, Fariselli, Martelli, & Casadio, 2009; Capriotti et al.,

2013). SNPs&GO is a support vector machine-based approach to pre-

dict the impact of single amino acid variations (SAVs). Our method
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takes in input information extracted from the protein sequence profile

and functional information encoded through the gene ontology (GO)

terms. In a previous independent evaluation, SNPs&GO was scored

among the most accurate methods for predicting the impact of SAVs

(Thusberg, Olatubosun, & Vihinen, 2011). In this work, we analyze the

best predictions submitted using two versions of SNPs&GO, trained on

data sets of different size and performing among the state-of-the-art

predictors (Calabrese et al., 2009; Capriotti et al., 2013). The assess-

ment of the results of the four challenges of theCAGI experiments con-

firmed that SNPs&GOconsistently scores among the bestmethods for

predicting the impact of SAVs.

2 MATERIAL AND METHODS

2.1 SNPs&GOpredictions

SNPs&GO is a support vector machine-based approach that takes

in input information from protein sequence and function. SNPs&GO

internally runs a BLAST (Altschul et al., 1997) search against the

UniRef90database (Suzek,Huang,McGarvey,Mazumder, &Wu, 2007)

to build the protein sequence profile. Functional information encoded

byGO terms are extracted fromUniProt database (Magrane&UniProt

Consortium, 2011). For eachGO term, all the human proteins reported

in SwissVar database (Mottaz, David, Veuthey, & Yip, 2010) are col-

lected and a log-odd score (LGO) is calculated as the logarithm of the

fraction of disease and neutral SAVs. Thus, the functional score of each

protein is obtained by summing the LGO values of the associated GO

terms and their parents in the GO-rooted graph. The SNPs&GO func-

tional score contributes to the performance of our method providing

an empirical estimation of the probability of having a deleterious SAV

in a protein, given the associated GO terms.

The prediction output of SNPs&GO is a score ranging between 0

and 1 that represents the probability of a SAV to be pathogenic. By

construction, a threshold (t) of 0.5 is selected to discriminate between

benign (t≤0.5) and pathogenic (t>0.5) SAVs. Depending on the score, a

reliability index (RI) ranging from0 to10 is defined toestimate the level

of confidence of the prediction. In this paper, we considered two ver-

sionsof SNPs&GO: thefirst version (SNPs&GO09) implementedbefore

2009 (Calabrese et al., 2009) used by the Biocomputing Group and

the updated version (SNPs&GO13) used and maintained by the Bio-

FolD Unit (Capriotti et al., 2013). With respect to the older version of

SNPs&GO, the new one has been trained on an updated version of the

SwissVar database (Mottaz et al., 2010), including ∼4,700 more SAVs

(∼14%). Furthermore, the conservation and functional scores are cal-

culated using the updated versions of the UniRef90 database and GO

that correspond to ∼8,900 more sequences with at least one associ-

ated GO term (32%).

2.2 CHEK2 challenge (CAGI 2010)

For the CHEK2 challenge, predictors were asked to classify variants as

occurring in breast cancer cases or controls and to provide an estima-

tion of the probability of a given variant to be in the case set (fcase).

We focused our analysis on the subset of 32 SAVs (MUT-CHEK2).

We predicted the probability fcase with SNPs&GO
09 (fpcase), consider-

ing both the binary prediction (disease/neutral) and the RI; predictions

were transformed into probability with a linear function so that fpcase
= 1 corresponds to disease predictions with RI= 10, and fpcase = 0 cor-

responds to neutral predictions with RI = 10. The list of MUT-CHEK2

variants with the experimental values of fcase (f
e
case) was released (Le

Calvez-Kelm et al., 2011), and it is reported in Supp. Table S1, along

with predictions performed with SNP&GO09, SIFT (Ng & Henikoff,

2003), and AlignGVGD (Mathe et al., 2006). To evaluate the quality

of the predictions, we transformed the experimental fcase (f
e
case) in a

binary classification (pathogenic/benign), by applying a threshold equal

to 0.7 (which represents the median of the optimal fecase using the

default prediction thresholds). If fecase >0.7, the variation is classified

as pathogenic, otherwise benign (see Supp. Materials). For the pre-

dicted fcase (fpcase), the thresholds were selected by maximizing the

performance of each method (see Supp. Materials). With this assump-

tion, the MUT-CHEK2 dataset is divided, on the basis of fecase, in 21

pathogenic and11benign SAVs, and the performanceof the algorithms

was calculated using the standard evaluationmeasures for binary clas-

sifiers (see Supp. Materials). For the CHEK2 challenge, we compared

the performance of SNPs&GO09 (Calabrese et al., 2009) with SIFT

(Ng & Henikoff, 2003) and AlignGVGD (Mathe et al., 2006), which

have been used by the assessors as baseline methods. More informa-

tion about the CHEK2 challenge is available in Supp. Materials and at

http://goo.gl/2WIr6M.

2.3 RAD50 dataset (CAGI 2011)

As in the case of CHEK2, for this challenge, too, SNPs&GO09 was used

to predict the probability of each variant to be in the case set. With

SNPs&GO,we scored the pathogenicity of 35 SAVs (MUT-RAD50) car-

ried by up to 20 individuals. TheMUT-RAD50 list of variations and the

associated predictions are reported in Supp. Table S2. This list of vari-

ants has been released in a recent publication (Damiola et al., 2014). As

we did for the CHEK2 challenge, we classified each variant according

to the fraction of carriers in the case set (fecase) defined in Supp. Eq. S3.

Using a threshold of 0.7, the MUT-RAD50 set splits in 17 pathogenic

and 18 benign missense SNVs. More information about the RAD50

challenge is available in Supp.Materials and at http://goo.gl/y4nwl1.

2.4 p16INK4A challenge (CAGI 2013)

For the p16 challenge in CAGI 2013, predictors were asked to esti-

mate the proliferation rates (p) of mutation-like cells. Considering

experimental results, a score of 0.50 was assigned to samples with

same proliferation rate as the control; variations leading to an increase

or decrease of the proliferation rate are labeled with a score higher

(up to 1) or lower (down to 0) than 0.5, respectively. We predicted the

proliferation rates with SNPs&GO13, using the raw output of the

method, which represents the probability of a variant to be related

to disease. The list of variations and the associated predictions are

reported in Supp. Table S3. The data providers also included a set 19

proliferation rates from mutation-like cells as possible training set

http://goo.gl/2WIr6M
http://goo.gl/y4nwl1
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(TRAIN-P16). For the p16 challenge, we compared the prediction

submitted by the BioFolD Unit using SNPs&GO13 and DrCancer

(Capriotti & Altman, 2011) with the most accurate predic-

tion in the CAGI assessment, developed by the SPARKS-Lab

(http://sparks-lab.org/), and implementing a method specifically

optimized on the TRAIN-P16 dataset.More information about the p16

challenge is available in Supp.Materials and at http://goo.gl/51hGuZ.

2.5 NAGLU challenge (CAGI 2016)

For the NAGLU challenge, CAGI 2016 participants were asked to pre-

dict the relative change in enzymatic activity (RelAct) associated to

each SAV. In this paper, we perform the a posteriori comparison of

the submitted predictions obtainedwith SNPs&GO09 (Calabrese et al.,

2009)with themost accurate predictions in theCAGI assessment, per-

formed with MutPred (Li et al., 2009). In this analysis, we include the

new predictions from the last version of SNPs&GO13 (Capriotti et al.,

2013), whichwere not submitted to theCAGI. The list ofNAGLU amino

acid variations and the associated predictions are reported in Supp.

Table S4. More information about the NAGLU challenge is available in

the Supp.Materials and at http://goo.gl/wp17aB.

2.6 Comparisonwith othermethods

In this study, we compared two versions of SNPs&GO (SNPs&GO09

and SNPs&GO13) with other computational methods. In detail, for

CHEK2 and RAD50 challenges, we compared SNPs&GO09 predictions

submitted by the Biocomputing Group with AlignGVGD (Mathe et al.,

2006) and SIFT (Ng & Henikoff, 2003). Align-GVGD, which has been

used by the assessor as baseline method, is a program that combines

the biophysical characteristics of amino acids and protein multiple

sequence alignments. It is based on the calculation of Grantham score

(Grantham, 1974) on a multiple sequence alignment. AlignGVGD clas-

sifies SAVs in seven classes from C0 to C65, which correspond to the

lowest and highest level of enrichment for pathogenic variants. For the

AlignGVGD predictions, we used the precalculated multiple sequence

alignments including all the sequences fromHomo sapiens to Sea urchin

(see http://agvgd.hci.utah.edu/).

SIFT is one of the most popular tools for scoring the impact of

genetic variants based on sequence homology. The algorithm is based

on the assumption that important amino acids will be conserved in

the protein family, and changes at well-conserved positions tend to

be predicted as deleterious. SIFT returns a probabilistic score rang-

ing from 0 to 1, which represents the normalized probability that

an amino acid change is tolerated. In standard predictions, varia-

tions with score below 0.05 are classified as pathogenic. The pre-

dictions from SIFT algorithm were calculated using the Web server

http://sift.bii.a-star.edu.sg/ with default parameters.

Although AlignGVGD and SIFT are not among the most updated

tools currently available for predicting the impact of the genetic vari-

ations, we included them in our analysis as baseline methods to com-

pare with SNPs&GO. This is in agreement with the procedure fol-

lowed by the assessor of CHEK2 and RAD50 challenges, who selected

AlignGVGD as reference for benchmarking different predictors.

For the p16INKA4 challenge, we compared the predictions of

SNPs&GO13 and DrCancer (Capriotti & Altman, 2011) submit-

ted by the BioFolD Unit with those from an ad hoc method

implemented by the SPARK-LAB. DrCancer is a modification of

the SNPs&GO algorithm that is based on the slim version of

the GO (http://geneontology.org/page/go-slim-and-subset-guide). The

disease-specific method has been trained and tested on a set of more

than 3,000 cancer-causing variants. Similar to SNPs&GO, DrCancer

returns in output a score from 0 to 1 representing the probability of

SAVs of being cancer causing. The SPARK-LABmethod used SVMwith

linear kernel trained on the TRAIN-P16 dataset. The input features

of the algorithm include a combination of the position-specific scoring

matrix values forwild-type andmutant residues and the predicted free

energy change upon SAV computed by ROSETTA3 (Leaver-Fay et al.,

2011) and dMutant (Zhou & Zhou, 2002).

For the NAGLU challenge, only the binary predictions derived

from SNPs&GO09 were officially submitted by the Bologna Biocom-

puting Group. To better evaluate the accuracy of our algorithm,

we compared the predictions from SNPs&GO09 with those from

the latest version of SNPs&GO (SNPs&GO13) maintained by the

BioFolD Unit and two versions of MutPred2 algorithm (Li et al.,

2009). In detail, for MutPred2, we considered the predictions of

the algorithm running in default mode (MutPred2) and the pre-

dictions without gene-level homology count features (MutPred2*).

MutPred2 is a machine-learning approach based on an ensemble

of neural networks trained on a combination of features including

the SIFT output, conservation scores, and predicted structural and

functional residue properties. Similar to SNPs&GO, MutPred2 out-

put represents the probability that the amino acid substitution is

deleterious.

For the NAGLU challenge, SNPs&GO13 and MutPred2 predictions

were obtained subtracting the raw outputs to one.

2.7 Prediction evaluation

The evaluation of the accuracy of computational methods for variant

annotation is a difficult task whose solution depends on the complex-

ity of the prediction. For the CAGI challenges here discussed, we use

two evaluation systems. The first evaluation is based on the regres-

sion between the experimental and predicted values (rPearson) and their

ranking (rSpearman, rKendallTau). For this test, the root mean square error

(RMSE) after linear fitting is also calculated. The second evaluation is

based on the standard evaluation measures for binary classifiers sug-

gested in recent papers (Vihinen, 2012, 2013). They are: true-positive

rate (TPR) and true-negative rate (also referred as sensitivity and

specificity), positive and negative predicted values (PPV, NPV), over-

all accuracy (Q2), Matthews correlation coefficient (MC), and area

under the receiver operating characteristic curve (AUC). The thresh-

olds for the classification of the experimental and predicted data were

optimized for each challenge. More details about the evaluation mea-

sures and classification thresholds used for the evaluation of the

CHEK2, RAD50, p16, and NAGLU challenges are described in Supp.

Materials.

http://sparks-lab.org/
http://goo.gl/51hGuZ
http://goo.gl/wp17aB
http://agvgd.hci.utah.edu/
http://sift.bii.a-star.edu.sg/
http://geneontology.org/page/go-slim-and-subset-guide
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TABLE 1 Performance of the predictors for the CHEK2 challenge (CAGI 2010)

Method Q2 TPR PPV TNR NPV AUC MC RMSE rPearson rSpearman rKendallTau

SNPs&GO09 0.72 0.81 0.77 0.55 0.60 0.73 0.36 0.46 0.29 0.32 0.25

SIFT 0.69 0.95 0.69 0.18 0.67 0.53 0.22 0.43 0.19 0.10 0.08

AlignGVGD 0.66 0.67 0.78 0.64 0.50 0.70 0.29 0.67 0.32 0.26 0.25

Notes: The overall accuracy (Q2), true-positive/negative rates (TPR/TNR), positive/negative predicted values (PPV/NPV), area under the ROC curve (AUC),
andMatthews correlation coefficient (MC) are calculated using an fecase threshold of 0.70 for dividing cases from controls. The positive and negative classes
refer to pathogenic and benign variations, respectively. For SNPs&GO09, SIFT, and AlignGVGD, the fpcase thresholds are 0.35, 0.60, and C0, respectively. All
the binary (Q2, TPR, TNR, PPV, NPV, AUC, andMC) and regression (RMSE, rPearson , rSpearman, and rKendallTau) evaluationmeasures are described in Supp. Mate-
rial. The confusionmatrices for calculating the performance of the binary classifiers are reported in Supp. Table S5. Bold correlation coefficients correspond
to P values< 0.05. The SNPs&GO09 P value for the Spearman test is 0.07.

TABLE 2 Performance of the predictors for the RAD50 challenge (CAGI 2011)

Method Q2 TPR PPV TNR NPV AUC MC RMSE rPearson rSpearman rKendallTau

SNPs&GO09 0.66 0.41 0.78 0.89 0.62 0.64 0.34 0.64 0.27 0.32 0.28

SNPs&GO09* 0.73 0.57 1.00 1.00 0.57 0.82 0.57 0.66 0.43 0.62 0.56

SIFT 0.63 0.65 0.61 0.61 0.65 0.57 0.26 0.49 0.12 0.23 0.19

AlignGVGD 0.57 0.12 1.00 1.00 0.55 0.55 0.25 0.68 0.08 0.08 0.07

Notes: SNPs&GO09* refers to the performance on the subset of 11 amino acid variations in the Zn hook and P-loop hydrolase domains. The overall accuracy
(Q2), true-positive/negative rates (TPR/TNR), positive/negative predicted values (PPV/NPV), area under the ROC curve (AUC), and Matthews correlation
coefficient (MC) are calculated using an fecase threshold of 0.70 for dividing cases from controls. The positive and negative classes refer to pathogenic and
benign variations, respectively. For SNPs&GO09, SIFT, and AlignGVGD, the fpcase thresholds are 0.10, 0.15, and C45, respectively. All the binary (Q2, TPR,
TNR, PPV, NPV, AUC, and MC) and regression (RMSE, rPearson, rSpearman, and rKendallTau) evaluation measures are described in Supp. Material. The confusion
matrices for calculating the performance of the binary classifiers are reported in Supp. Table S5. Bold correlation coefficients correspond to P values< 0.05.
The SNPs&GO09 P value for the Spearman test is 0.06.

3 RESULTS

3.1 CHEK2 and RAD50 challenges

The CHEK2 and RAD50 challenges run in the first two editions of the

CAGI experiments. For these challenges, the predictors were asked to

estimate the probability of the carrier of a specific SAV to be in the

case set (fcase). The predictions were evaluated by Sean Tavtigian (Uni-

versity of Utah), who also provided the experimental data for both

challenges. According to his assessment, we compared the prediction

performed with SNPs&GO09 with those performed with AlignGVGD

and SIFT, by estimating the evaluation measures for binary classifi-

cation (Q2, FPR, TPR, NPV, PPV, AUC, MC) and regression (RMSE,

rPearson, rSpearman, rKendallTau) described in Supp. Material. The perfor-

mances of the three predictors for the CHEK2 and RAD50 challenges

are summarized in Tables 1 and 2. SNPs&GO09 resulted in better per-

formance than SIFT and AlignGVGD in the regression tests (RMSE,

rPearson, rSpearman, rKendallTau). Although all the predictors achieved rel-

atively low correlation coefficient values, SNPs&GO is the only one

scoring with a consistently significant rKendall/Tau (P value < 0.05). It

must be noted that the experimental values of fecase are biased toward

the extreme values: SAVs with fecase either equal to 0 or 1 correspond

to 78% and 74% of the CHEK2 and RAD50 datasets, respectively. This

bias can hamper the estimation of the correlation coefficients.

In a second test, we evaluated the performances of SNPs&GO09,

SIFT, and AlignGVGD as binary classifiers. For each method, we trans-

formed the probability predictions into classes by optimizing the sep-

arating threshold. For each method and challenge, the threshold is the

valuemaximizing the product amongQ2, AUC, andMC, as described in

Supp.Materials.With this procedure, SNPs&GO09 reaches a good per-

formance on the CHEK2 dataset showing an Q2 of 72%, a MC of 0.36

and an AUC of 0.73when the output threshold is set to 0.35.

For the RAD50 challenge, SNPs&GO09 shows better performance

than the other methods, and the performance becomes significantly

better when we focus on the variations in the Zn hook and P-loop

hydrolase domains. On this subset of 11 SAVs, SNPs&GO09 achieves

good performances both in the binary classification and regression

tests. For the RAD50 challenge, SIFT resulted in better performance

thanAlignGVGD in terms ofQ2, but bothmethods showedAUCs close

to those of the random predictors.

3.2 p16 challenge

For the p16 challenge, predictors were asked to estimate the pro-

liferation rate of mutation-like cells with respect to wild-type cells

(RelPro). In this experiment, a prediction near 0.5 indicates a prolif-

eration rate similar to wild-type cell, whereas values close to 1 are

associated to the highest proliferation rates in mutated cells. Here,

we compared the predictions of SNPs&GO13 and DrCancer submit-

ted by the BioFolD Unit with the most successful predictions submit-

ted by the SPARK-LAB. With this comparison, we show that the auto-

matic methods (SNPs&GO13 and DrCancer) can achieve similar level

of accuracy with respect to the SPARK-LAB algorithm, which has been

specifically developed for the p16 challenge. Our comparison, based

on a regression test (Table 3), reveals that SPARK-LAB predictions

achieved better correlation coefficients. In detail, SPARK-LAB results

in 0.16 better rPearson and rSpearman, with respect to SNPs&GO13. The
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TABLE 3 Performance of the predictors for the p16 challenge (CAGI 2013)

Method Q2 TPR PPV TNR NPV AUC MC RMSE rPearson rSpearman rKendallTau

SPARK-LAB 0.90 0.80 1.00 1.00 0.83 0.92 0.82 76 0.83 0.87 0.69

SNPs&GO13 0.70 1.00 0.63 0.40 1.00 0.88 0.50 76 0.66 0.81 0.60

DrCancer 0.60 1.00 0.56 0.20 1.00 0.84 0.33 76 0.58 0.67 0.47

Notes: The overall accuracy (Q2), true-positive/negative rates (TPR/TNR), positive/negative predicted values (PPV/NPV), area under the ROC curve (AUC),
andMatthews correlation coefficient (MC) are calculated using an experimental relative proliferation (RelPro) rate threshold of 75 and a predicted thresh-
old of 0.75. The positive and negative classes refer to pathogenic and benign variations, respectively. All the binary (Q2, TPR, TNR, PPV, NPV, AUC, and
MC) and regression (RMSE, rPearson, rSpearman, and rKendallTau) evaluation measures are described in Supp. Material. The confusion matrices for calculating the
performance of the binary classifiers are reported in Supp. Table S5. Bold correlation coefficients correspond to P values< 0.05.

F IGURE 1 Comparison between predicted and experimental relative proliferation (RelPro) rates for the p16 challenge. Linear regression for
SPARK-LAB (A), SNPs&GO13 (B), and DrCancer (C) predictions. r and r0 are the Pearson’s correlation coefficients with and without the amino acid
variation p.Gly23Ala, respectively

difference in the value of rKendallTau is ∼0.09. After plotting the lin-

ear regression curves between predicted and experimental values

(Figure 1), we noticed that the difference in the performances ismainly

due to the wrong prediction of the amino acid variation p.Gly23Ala.

As shown in Figure 1, removing prediction of the amino acid varia-

tion p.Gly23Ala in the calculation, the rPearson values, the SPARK-LAB

method, and SNPs&GO13 differ by 0.02. According to the suggestion

of CAGI assessors, the predictors were also evaluated as binary clas-

sifiers (Carraro et al. 2017). In Table 3, we report the performance

considering all predictions with score higher than 0.75 as deleteri-

ous variants. With this assumption, we observed a decreasing level of

accuracy going from SPARK-LAB toDrCancer predictions. Despite the

differences in the scores, it is still remarkable that a general method

like SNPs&GO resulted in a good level of performance with respect to

the problem-specificmethod developed by the SPARK-LAB. The analy-

sis of the assessors showed SNPs&GO and DrCancer score among the

best predictors for this challenge.

3.3 NAGLU challenge

For the NAGLU challenge, participants were asked to predict the value

of the RelAct of the mutated NAGLU with respect to the wild type. In

this experiment, predictions close to one correspond to SAV with sim-

ilar enzymatic activity with respect to the wild type. RelAct equal to

zero is associated to the variants with no enzymatic activity. We used

SNPs&GO by setting the RelAct equal to 1 minus the probability for

the variant to be related to disease.

In our analysis, we compared the performance of two versions

of MutPred2 with the two versions of SNPs&GO (SNPs&GO09 and

SNPs&GO13). The MutPred2 predictions were performed in default

mode (MutPred2) and without gene-level homology count features

(MutPred2*).

For SNPs&GO, the first set of predictions have been submitted by

the Bologna Biocomputing Group using SNPs&GO09. The second set

of predictions, which were not submitted to the CAGI experiments,

have been directly derived from the raw output of the last version

of SNPs&GO (SNPs&GO13), maintained by the BioFolD Unit. For the

NAGLU challenge, we report the results of the regression and binary

classification tests in Table 4. Our analysis shows that the accuracy of

SNPs&GO13 is comparable toMutPred2*, which is the bestmethod for

this challenge. The average difference in the correlation coefficients

between SNPs&GO13 and MutPred2* is ∼0.02. The results of the

binary classification test, performed by optimizing the RelAct thresh-

olds for all the methods and by considering the same output clas-

sification threshold equal to 0.5, confirm the similarity between the

performance of SNPs&GO13 andMutPred2*. Indeed, SNPs&GO13 and

MutPred2* achieve the same Q2 and AUC (with RelAct thresholds

equal to 0.28 and 0.34, respectively). In Figure 2, we show that the per-

formance of SNPs&GO13 andMutPred2* in terms ofQ2, AUC, andMC

are consistently similar at different RelAct threshold.
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TABLE 4 Performance of the predictors for theNAGLU challenge (CAGI 2016)

Method Q2 TPR PPV TNR NPV AUC MC RMSE rPearson rSpearman rKendallTau

MutPred2* 0.80 0.88 0.80 0.70 0.81 0.85 0.60 0.30 0.60 0.61 0.43

MutPred2 0.68 0.38 0.69 0.89 0.68 0.79 0.31 0.30 0.51 0.54 0.37

SNPs&GO13 0.80 0.87 0.82 0.69 0.77 0.84 0.58 0.32 0.56 0.58 0.42

SNPs&GO09 0.72 0.70 0.82 0.74 0.61 0.72 0.43 0.48 0.42 0.43 0.35

Notes: The overall accuracy (Q2), true-positive/negative rates (TPR/TNR), positive/negative predicted values (PPV/NPV), area under the ROC curve (AUC),
and Matthews correlation coefficient (MC) are computed by choosing the threshold maximizing their product. The best performance for MutPred2*, Mut-
Pred2, SNPs&GO13, and SNPs&GO09 are obtained using an experimental relative activity (RelAct) threshold equal to 0.34, 0.55, 0.28, and 0.28, respectively.
A threshold on the prediction equal to 0.5 is considered for all the methods. The positive and negative classes refer to pathogenic and benign variations,
respectively. All the binary (Q2, TPR, TNR, PPV,NPV, AUC, andMC) and regression (RMSE, rPearson, rSpearman, and rKendallTau) evaluationmeasures are described
in Supp.Material. The confusionmatrices for calculating the performance of the binary classifiers are reported in Supp. Table S5. Bold correlation coefficients
correspond to P values< 0.05.

F IGURE 2 Comparison between the binary classification performance of SNPs&GO13 (black) andMutPred2* (gray) on the NAGLU dataset

4 DISCUSSION

In this work, we analyzed the performance of SNPs&GO algorithm

in predicting the impact of SAVs. From 2010, the Bologna Biocom-

puting Group and the BioFolD Unit participated in all the editions

of the CAGI experiments with two different versions of SNPs&GO,

namely, SNPs&GO09 and SNPs&GO13. The first version of SNPs&GO

(SNPs&GO09), used by the Bologna Biocomputing Group, resulted

among the best algorithm for predicting the impact on SAVs in CHEK2

and RAD50 challenges. The last version of SNPs&GO (SNPs&GO13),

maintained by BioFolD unit, was successful in scoring the impact of

genetic variants in the latest CAGI challenges (p16 andNAGLU). In par-

ticular, the predictions submitted by the BioFolD Unit were among the

most accurate in the prediction of the impact of p16INK4A variants. In

our a posteriori evaluation of nonsubmitted predictions for theNAGLU

challenge, SNPs&GO13 resulted in performance similar to the best ver-

sion ofMutPred2 algorithm.

Our analysis shows that the automatic annotation of SAVs with

our tools scores better when predicting the functional impact of the

variants (p16 and NAGLU challenges in Tables 3 and 4) than the fre-

quency of disease variant carriers (fcase) (CHEK2 andRAD50 challenges

in Tables 1 and 2). This observation derives from the comparison of the

correlation coefficients for the p16 and NAGLU challenges (in almost

all the cases above 0.5) with those of theCHEK2 and RAD50 challenges

(around 0.29).

The better performance of the last version of SNPs&GO13 with

respect to the oldest SNPs&GO09 is likely due to themore informative

training set, in terms of the number of sequences available for align-

ments in the newer version of UniRef90 and variations in the training

set as collected from SwissVar. In particular, for the NAGLU challenge,

the release of SwissVar used for the training of SNPs&GO09 contained

only 25 disease-related SAVs, which is significantly lower than the 67

disease-related amino acid variants present in themore recent version

of SwissVar used for training SNPs&GO13.

In general, it is difficult to evaluate the gain in the performance

associated with the improvement of the GO annotations. Neverthe-

less, comparing SNPs&GOwithAlignGVGDand SIFT in theCHEK2 and

RAD50 challenges, we learnt that the functional contribution to the

predictions is particularly helpful when evolutionary information is not

discriminative enough.

Finally, we would like to point out that the improvement in the per-

formance obtained by SNPs&GO09 in the RAD50 challenge on the sub-

set of variants falling in specific protein domains (Table 2) supports the

notion that evolution information is important for the quality of the

prediction. Indeed, conserved regions, such as protein domains, result

in more informative sequence alignments.

In the case ofmultiple SAVs in the sameposition, evolutionary infor-

mation may not be sufficient for discrimination, and other features

(such as physicochemical characteristics, steric hindrance, solvent

accessibility, specific position in the protein structure) may be relevant
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for discriminating disease related to neutral variations. SNPs&GO is

based on sequence and function.

5 CONCLUSIONS

The analysis of the results of four CAGI challenges (CHEK2, RAD50,

and p16, NAGLU) shows that SNPs&GO was consistently among the

best algorithms for predicting the effect of the SAVs. Although the

prediction of the real value of the functional impact is still a difficult

task, SNPs&GOhas shownagood level of generalization reaching good

performance as a binary classifier when the predictions are directly

generated from the raw output without any gene/problem-specific

customization.
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