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Structure Superimposition 
Given two sets of points with some the dimension A = (a1, a2, …, an) and 
B = (b1,b2,…bn) in Cartesian space, find the optimal rigid body transformation G 
between the two subsets A and B that minimizes a given distance metric D over 
all possible rigid body transformation G, i.e.

Y= G(X) = A * X + B
A = 3x3 rotation matrix
B = the translation vector
X = original point

Therefore structural superimposition correspond the best rototraslation which 
computational complexity is O(n).
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Structural Alignment 
Given two sets of points A = (a1, a2, …, an) and B = (b1,b2,…bm) in Cartesian 
space, find the optimal subsets A(P) and B(Q) with |A(P)| = |B(Q)|, and find the 
optimal rigid body transformation G between the two subsets A(P) and B(Q) that 
minimizes a given distance metric D over all possible rigid body transformation 
G, i.e.

                                                     

The two subsets A(P) and B(Q) define a “correspondence”, and  
p = |A(P)| = |B(Q)| is called the correspondence length. Naturally, the 
correspondence length is maximal when A(P) and B(Q) are similar.

Therefore there are essentially two problems in structure alignment: 
• Find the correspondence set (which is NP-hard), and 
• Find the alignment transform (which is O(n)).

Bourne P. 2012
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Structural Alignment

A 

B 

G(B) 

Correspondence set 

RMSD or other 
distance measures 

Correspondence: (A1,B1), (A2,B2), (A3,B6), (A4,B7), (A5,B8) 



Superimposition 
vs Alignment

• Structure superposition assumes you already know which atoms to superimpose  
(correspondence set)

           it merely optimizes the position of the chosen atoms (relatively simple)

• Structure alignment must first determine what atoms to align (difficult). 



Structures Comparison

Feature 
Extraction

Sperm Whale  
Myoglobin  
(1JP6:A)

Bacterial  
Haemoglobin  

(1VHB:A)

Algorithm

Statistical Significance

 Structure 1  Structure 2

Comparison Algorithm 

Score
Bourne P. 2012



Level of Comparison
Three domains of Thermus aquaticus
elongation factor EF-Tu: 
in blue (all-β), red (α/β) and green (all-β).

Structural domains (the units of fold) are independently stable tertiary 
structures of proteins. They are distinct functional and/or structural units and 
can evolve, exist and function independently. Therefore, the 
same domain can be a part of different protein (EBI on-line course)

The definition of domain is often heuristic and questionable. The independent 
evolution/existence and functionality is rarely experimentally tested.



Multi Domain Alignment
Domain movements in PGK 
catalysis. The fully-open 
resting state of the enzyme 
defined by refinement 
against SAXS data (left) 
binds the substrates 
13BPG in the N domain 
(green) and ADP in the C-
domain (red).  

A rotation of ~56° of the hinge region (blue) brings the substrates together to 
initialise catalysis and ATP production (right).

Image credit: M.W. Bowler



Topology Independent 
Alignments

Most protein structural alignment methods can reliably classify proteins into similar 
folds given the structural units from each protein are in the same sequential order. 
However, the evolutionary possibility of proteins with different structural topology but 
with similar spatial arrangement of their secondary structures pose a problem.

Dundas et al. (2007) PMID:17937816

Nucleoplasmin-core (1k5j, 
chain E, top panel), and 
the fragment of residues 
37–127 of auxin binding 
protein 1 (1lrh, chain A, 
bottom panel). a) These 
two proteins superimpose 
well spatially, with an 
RMSD value of 1.36Å for 
an alignment length of 68 
residues.

https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-8-388.pdf
https://bmcbioinformatics.biomedcentral.com/track/pdf/10.1186/1471-2105-8-388.pdf


Structural Alignment Tools

https://en.wikipedia.org/wiki/Structural_alignment_software 

There are several well-documented, easy to use software packages for structural 
alignment. More than 100 are reported on wikipedia.

https://en.wikipedia.org/wiki/Structural_alignment_software
https://en.wikipedia.org/wiki/Structural_alignment_software


Method Classification

Flexible
No  Only rigid-body transformations are considered between the structures being 
compared.
Yes  The method allows for some flexibility within the structures being compared, 
such as movements around hinge regions.

Type
Pair  Pairwise Alignment (2 structures only);
Multi  Multiple Structure Alignment;

Class
Cα  Backbone Atom (Cα) Alignment;
AllA  All Atoms Alignment;
SSE  Secondary Structure Elements Alignment;
Seq  Sequence-based alignment
C-Map  Contact Map
Surf  Connolly Molecular Surface Alignment
SASA  Solvent Accessible Surface Area
Dihed  Dihedral Backbone Angles
PB  Protein Blocks

Protein descriptors



Comparing Torsion Angles
Torsion Angles (Φ,Ψ) are:

• local by nature
• invariant upon rotation and translation of the molecule
• compact - complexity o(n)

Good for alignment of local region but 
possible problems on the alignment of the whole structure.

Credit: Predrag Radivojac



Distance Matrix
Advantage:
• invariant upon rotation and translation of the molecule
• can be used for protein comparison

Disadvantages
• Comparing matrices is an hard computational problem
• Complexity is o(n2) where n represents the number of residues
• Insensitive to chirality

Credit: Predrag Radivojac
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Input & output of alignment algorithm
   
   Input: two proteins:        

Structural Alignment 
Components 

Phil Bourne 2012
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 Constraints: 
   min rmsd:

max L
min Gaps

  Output: An alignment
      and scores

Dynamic programming, Integer programming, Monte Carlo…

Statistical Significance



• All methods can identify obvious similarities between two structures

• Remote similarities are detected by a subset of methods – different 
remote similarities are recognized by different methods

• Good alignments are much harder to come by

• Speed is a serious issue with some algorithms

State of the art

Phil Bourne 2012



• Biologically meaningful alignments not just geometrically meaningful

• Complete database of all alignments

• Ability to apply to structures not in the PDB

Desirable Method Features

Phil Bourne 2012



• Compare octameric fragments – an aligned fragment pair (AFP) 
(local alignments)

• Stitch together AFPs

• Find the optimal path through the AFPs

• Optimize the alignment through dynamic programming

• Measure the statistical significance of the alignment

CE Algorithm

Shindyalov and Bourne (1998) PMID 9796821

https://scholar.google.com/scholar_url?url=https://academic.oup.com/peds/article-pdf/11/9/739/18542489/110739.pdf&hl=en&sa=T&oi=ucasa&ct=ufr&ei=7i1KYLfICMWDy9YP-bagiAg&scisig=AAGBfm2ZDaccDzl2yDXKhkP49y5jqMhIyg
https://scholar.google.com/scholar_url?url=https://academic.oup.com/peds/article-pdf/11/9/739/18542489/110739.pdf&hl=en&sa=T&oi=ucasa&ct=ufr&ei=7i1KYLfICMWDy9YP-bagiAg&scisig=AAGBfm2ZDaccDzl2yDXKhkP49y5jqMhIyg


The alignment between two proteins A and B is the longest 
continuous path P of AFPs of size m in a similarity matrix

Similarity Matrix S represents all AFPs conforming to some 
similarity criterion (e.g., low RMSD):

         S=(nA-m+1)×(nB-m+1)

m = Length of AFP
nA = Length of protein A
nB = Length of protein B

This is very large to compute – constraints are needed

Constrain the search

Shindyalov and Bourne (1998) PMID 9796821

https://scholar.google.com/scholar_url?url=https://academic.oup.com/peds/article-pdf/11/9/739/18542489/110739.pdf&hl=en&sa=T&oi=ucasa&ct=ufr&ei=7i1KYLfICMWDy9YP-bagiAg&scisig=AAGBfm2ZDaccDzl2yDXKhkP49y5jqMhIyg
https://scholar.google.com/scholar_url?url=https://academic.oup.com/peds/article-pdf/11/9/739/18542489/110739.pdf&hl=en&sa=T&oi=ucasa&ct=ufr&ei=7i1KYLfICMWDy9YP-bagiAg&scisig=AAGBfm2ZDaccDzl2yDXKhkP49y5jqMhIyg


pAi = AFPs starting residue position in protein A at the i-th position 
     of the alignment path

m = longest continual path – set as 8

One of the conditions (1)-(3) should be satisfied for 2 consecutive AFPs i 
and i+1 in the path 

(1) = 2 consecutive AFPs aligned without gaps
(2) = Two consecutive AFPs with a gap in protein A
(3) = Two consecutive AFPs with a gap in protein B

Path Definition

Phil Bourne 2012



Gap sizes are limited to G – heuristically set as 30 residues

Extension of the Path

Phil Bourne 2012



1.  RMSD from least squares 
superposition used to select few 
best fragments

2.  Full set of inter-residue 
distances used for a scoring 
single AFP 

3.  Distance calculated from 
independent set of inter-residue 
distances where each distance is 
used only once 
used for combinations of 2 AFPs

Similarity Measures

Phil Bourne 2012



Evaluate the probability of finding an alignment path of the same length  
or smaller gaps and distance from a random set of non-redundant 
structures.

Optimization:

The 20 best alignments with a Z score above 3.5 are assessed 
based on RMSD and the best kept. This produces approx. one 
error in 1000 structures

Each gap in this alignment is assessed for relocation up to m/2

Iterative optimization using dynamic programming is performed
using residues for the superimposed structures

Statistical Evaluation

Phil Bourne 2012



• Will not find non-topological alignments (outside the bounds of the 
dotted lines)

• What are the correct “units” to be comparing? 

• CE initially worked on chains – as we shall see in future weeks 
domains are the correct units, but definition of the domains is not 
straightforward

Limitations

Phil Bourne 2012



• Protein secondary structure elements (SSE) – natural and 
convenient objects for building three dimensional graphs.

• Secondary structures provide most functionality and is conserved 
through evolution

• Details of protein fold – expressed in terms of two SSE – helices 
and strands

PDBe Fold

Phil Bourne 2012



SSE graphs- represented by vectors

Each SSE can be used as graph vertices (Ti, ρi)

Any 2 vertices are connected by an edge label L – describes position 
and orientation of the connected SSEs

Each edge labelled with a property vector – α1/2 angle between edge 
and vertices, torsion angle between vertices, length of the edge L

Graph Representation (I)

α2

eij 

ρ1

ρ2

L

α1Vi α4 α3

Krissinel and  Henrick (2004) PMID: 15572779

http://journals.iucr.org/d/issues/2004/12/01/ba5056/ba5056.pdf
http://journals.iucr.org/d/issues/2004/12/01/ba5056/ba5056.pdf


Sets of vertices, edges and their labels provides full definition of the 
graph.

Graph matching algorithm is required – set of rules for comparing 
individual vertices and edges – tolerances chosen empirically

Relative and absolute vertex and edge lengths are used for comparison 
– allows larger absolute differences for longer vertices and edges

Torsion angle comparison – distinguish mirror symmetry mates 

Graph Representation (II)

α2

eij 

ρ1

ρ2

L

α1Vi α4 α3



Graph Matching
H1 
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Matching the SSE graphs yields a 
correspondence between secondary 
structure elements, that is, groups of 
residues. The correspondence may 
be used as initial guess for structure 
superposition and alignment of 
individual residues. 



•  There are three options –  

1) connectivity of SSEs neglected 

Different 
connectivity in 
SSE but SSE 
graphs are 
geometrically 
identical 

PDBe Fold Approaches
1) Connectivity of SSE Neglected 

2) Soft connectivity – general order of SSEs along their protein chains are 
same in both structures BUT any number of missing/unmatched SSE 
between matched ones allowed 

3) Strict connectivity – matched SSEs follow same order along their 
protein chains – separated only by equal number of matched/
unmatched SSE in both structures 

   To obtain 3D alignment of individual residues – represent them by their 
C-alpha atoms – use results of graph matching as a starting point 



MAMMOTH Algorithm

https://ub.cbm.uam.es/software/online/mamothmult.php

The MAMMOTH (MAtching Molecular Models Obtained from Theory) algorithm is 
one of the fastest methods for structural alignment .

The method represents a protein structure as a set of unit vectors build using the 
vectors between C-α atoms.

MAMMOTH uses a dynamic programming algorithm to find the bast alignment 
between two protein structure.

https://ub.cbm.uam.es/software/online/mamothmult.php
https://ub.cbm.uam.es/software/online/mamothmult.php
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i+3

Ortiz et al. (2002) PMID:12381844

A Unit Vector is the normalized vector between two successive Cα atoms. 
For each position i consider the k consecutive vectors, which will be mapped into a unit 
sphere representing the local structure of k residues.   

Unit Vector Representation

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373724/pdf/0112606.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373724/pdf/0112606.pdf


For each position i, the k consecutive unit vectors (k=6) are grouped and aligned 
to the j set of unit vectors. Each pair of aligned unit vectors will be evaluated by 
calculating Unit Root Mean Square distance (URMSij).
The obtained URMS values are compared the minimum expected URMS distance 
between two random set of k unit vectors (URMSR).
The alignment score is than calculated normalizing URMSij to the URMSR value.

10 7 5

7 10 4

5 4 10

Unit Vector Scoring



Alignment

A Dynamic Programming procedure is then applied to search for the optimal structural 
alignment using a global alignment with zero end gap penalties. 
The maximum subset of local structures that have their corresponding Cα within 4.0 Å 
in the space are evaluated. The number of close atoms is used to evaluate the 
percentage of structural identity (PSI) using a variant of the MaxSub algorithm.

Siew et al. (2000) PMID: 11108700
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ods. For example, Yang and Honig (2000) reported 54%
coverage at the 99% confidence level with PrISM. There are
no published data regarding Dali. However, we have con-
ducted similar tests using DaliLite (Holm and Park 2000),
which indicated that DaliLite is able to detect 60% of SCOP
relationships at the 99% confidence level, a slightly better
performance, but similar to that obtained with MAMMOTH
or PrISM. We conclude that MAMMOTH shows perfor-
mance consistent with other structural alignment methods
when comparing experimental protein structures, and that
the P-value estimation provided by the EVD fitting is rather
accurate.

Protein fold recognition with experimental structures

So far we have shown evidence that MAMMOTH partitions
fold space in a way somewhat similar to that implicit in the
SCOP database. We were also interested in testing the con-
sistency and robustness of this partition, that is, the ability
of the method to recognize entire families of members be-
longing to the same fold in SCOP. We selected fold families
classified in SCOP with more than 15 members per family,
and from each fold family we randomly picked one repre-
sentative member, and then carried out comparisons with all
other members of that fold family. We then studied how
these families distribute as a function of MAMMOTH mean
recognition ability (i.e., percentage of members above the

Fig. 6. Coverage-error plot for MAMMOTH scores. See text for details.

Fig. 4. Extreme value distribution (EVD) fit at different length intervals
(Norm). In bars is the frequency histogram of PSI values; in red, the EVD
curve using parameters derived from the frequency histogram; in magenta
is the curve obtained using EVD parameters derived from a fitting to Norm
(see text for details). (A) Norm ! 100; (B) Norm ! 200.

Fig. 5. Length-dependent estimate of EVD parameters. Parameters fitted
at each sequence interval are in turn modeled as a function of the length of
the shortest protein in the comparison.

Ortiz et al.

2610 Protein Science, vol. 11

Background Distribution
Considering a dataset of random structures, it is possible to produce pairwise 
alignments that resulted in a empirical distribution of scores (s). From such distribution 
we can then evaluate μ and σ needed to calculated the p-value for P(s>x). 

Empirical Analytic

Statistical significance of MAMMOTH scores

An all-against-all comparison of different protein folds
(Table 1A, Appendix) was carried out with MAMMOTH.
The set of different folds compared was selected from the
SCOP database as described in Materials and Methods. Fig-
ure 3 summarizes the results of this calculation as a plot of
the relationship between length of the shortest protein being
compared and percentage of structural identity (see Mate-

rials and Methods) after optimal structural fitting. The dis-
tribution of points in Figure 3 follows the familiar exponen-
tial decay observed by Sander and Schneider (1991) and
Abagyan and Batalov (1997) in alignments of structurally
unrelated sequences, suggesting a similar law for the back-
ground distribution of random structural alignments with
MAMMOTH.

Thus, the raw data of percentage of superimposed resi-
dues (Fig. 3) were used to fit an extreme value distribution
(EVD; Gumbel 1958) using a procedure similar to that put
forward by Abagyan and Batalov (1997) and described in
Materials and Methods. Figure 4 shows examples of fitting
accuracy at two different sequence length intervals, com-
paring the frequency histogram obtained from the data and
the fitted EVD curve. Figure 5 shows the curve fitting of
these parameters to a power law of the length of the shortest
protein being compared. This allows us to obtain the ana-
lytical P-value only from the knowledge of the length of the
shortest protein and the percentage of superimposed resi-
dues. In order to test the accuracy of this P-value, a second
test of all-against-all structural alignments was carried out
(see Materials and Methods and Table 2A, Appendix). This
time the analytical probability was compared to the calcu-
lated probability using the test set. Figure 6 shows an ex-
cellent agreement between both curves in the most relevant
interval, up to the 95% confidence level. MAMMOTH is
able to detect 50% of the true fold relationships in SCOP at
the 99% confidence level, and 60% of them at the 95%
confidence level. These numbers are comparable to results
obtained with other automatic structure comparison meth-

Fig. 2. Running time as a function of problem size. In the x axis, the product of the length of the two sequences being compared is
shown, whereas in the y axis, the structural alignment time in seconds is plotted.

Fig. 3. Background distribution of random structural alignments. The
percentage of structural similarity (PSI) after superimposing with
MAMMOTH pairs of protein structures with different folds (see Materials
and Methods and Table 1A in the appendix) is plotted as a function of the
length of the shortest protein (Norm) being compared. All pairs of proteins
in Table 1A are compared in the figure.

Automated model comparison and evaluation

www.proteinscience.org 2609

made (Holm and Sander 1998; Kleywegt 1999; Shindyalov
and Bourne 2000; Reddy et al. 2001). Likewise, the ability
of MAMMOTH to detect structural similarities using query
substructures or building blocks can be of interest in ap-
proaches aimed at fitting models to electron density maps
using databases of known protein structures (Diller et al.
1999a,b; Perrakis et al. 1999; Lamzin and Perrakis 2000;
Jiang et al. 2001).

Finally, the high formal correspondence of MAMMOTH
program structure to sequence alignment programs suggests
that it should be straightforward to develop multiple struc-
ture alignment algorithms using MAMMOTH as a starting
point. Several groups are actively addressing the problem of
multiple structural alignment (Guda et al. 2001; Leibowitz
et al. 2001a,b). With the current increase in the mean num-
ber of homologous protein structures in the database, it is
important to develop more efficient algorithms for this
problem. Work is in progress along these directions.

Materials and methods

MAMMOTH algorithm

The evaluation method focuses on model coordinates, avoiding
references to sequence or contact maps while allowing registration
shifts and different resolution levels. The method considers only
the modeled portion of the target structure, avoiding the need to
model the complete chain of the target. In common with other
researchers, we reduce the complexity of the problem by using a
heuristic approach: We first find the structural alignment that pro-
vides the optimal local similarity of the protein backbone (i.e.,
optimal local structure similarity of the complete amino acid se-
quence of both proteins) and then try to find the maximum subset
of residues below a predefined distance in 3D space. The method
consists of four basic steps:

(1) From the C! trace, compute the unit-vector root mean
square (URMS) distance between all pairs of heptapeptides of both
model and experimental structure (Kedem et al. 1999). This is a
measure sensitive to local structure, originally suggested by Chew
et al. (1999). Consider a protein as described by its sequence of
!-carbons (C!). For each successive pair of C! atoms along the
backbone chain, we can record the unit vector in the direction from
C! i to C! i+1. We can then place all recorded unit vectors at the
origin, so that the backbone is mapped into vectors in the unit
sphere. The URMS distance between two protein segments A and
B (heptapeptides in our case) can then be computed by determining
the rotation matrix which minimizes the sum of the squared dis-
tances between the corresponding unit vectors, using standard
techniques (McLachlan 1979). The square root of the resulting
minimum sum is defined as the URMS distance between hepta-
peptides A and B. It has been shown that the URMS metric pro-
vides an efficient detection of substructure similarities in proteins
(Chew et al. 1999; Kedem et al. 1999).

(2) Use the matrix derived in step 1 to find an alignment of
local structures that maximizes the local similarity of both the
model and the experimental structure. First, URMS values need to
be transformed to similarity scores. This is accomplished by noting
that, as discussed by Chew et al. (1999), the expected minimum
URMS distance between two random sets of n unit vectors
(URMSR) is:

URMSR = !2.0 −
2.84

!n
(1)

Thus, from eq. (1) we can then compute a similarity score (SAB)
between any two heptapeptides A and B as:

SAB =
"URMSR − URMSAB#

URMSR ""URMSR,URMSAB# (2)

Here, "(URMSR, URMSAB) ! 10 if URMSR > URMSAB and
"(URMSR, URMSAB) ! 0 otherwise. Therefore, SAB provides a
similarity scale between 0 and 10. Entries SAB are used to build the
similarity matrix S obtained by comparing all possible heptapep-
tides in both proteins. Dynamic Programming is then applied to
this similarity matrix in order to build an alignment of both struc-
tures on the basis of their backbone (local) similarity. This align-
ment is produced using a global alignment method with zero end
gaps (Needleman and Wunsch 1970). Internal gaps are penalized
using an affine gap penalty function of the form g(k) ! !+#k,
where k is the number of gaps and ! and # are the opening and
extension penalties, respectively. Trial and error tests (see below)
indicated that values of ! ! 7.00 and # ! 0.45 gave good results.

(3) Find the maximum subset of similar local structures that
have their corresponding C! close in cartesian space. Close is
considered here as a distance less than or equal to 4.0 Å. The
method to find this subset is a small variant of the heuristic
MaxSub algorithm (Siew et al. 2000; http://www.cs.bgu.ac.il/
∼dfischer/MaxSub/). Once the algorithm converges, the percent-
age of structural identity (PSI) is computed, defined as the per-
centage of corresponding residues below 4.0 Å in 3D space, mea-
sured with respect to the shortest structure.

(4) Calculate the probability of obtaining the given proportion
of aligned residues (with respect to the shortest protein model) by
chance (P-value). The P-value estimation is based on extreme-
value fitting of the scores resulting from random structural align-
ments, following the work of Abagyan and Batalov (1997). The
Type-I extreme value distribution based on the largest extreme,
also known as the Gumbel distribution, has the following general
form for its probability density function (Gumbel 1958):

f"x# =
1
b

e
−"x−a#

b e−e
−"x−a#

b (3)

where a is the so-called location parameter and b is the scale
parameter. We are interested in the probability of having a t value
greater than x, P(t > x). This value can be found by integrating
equation (3) from t to infinity, yielding:

P"t $ x# = $t

%
f"x#dx = 1 − e−e

−"x−a#

b (4)

In order to apply eq. (4) we need parameters a and b. For their
derivation it is more convenient to work with the probability of
having a value t smaller than or equal to x:

P"t & x# = e−e
−"x−a#

b (5)

Taking logarithms in eq. (5) and setting Q(x) ! P(t & x) and
P(x) ! P(t > x), we have Q(x) + P(x) ! 1. Equation 5 can then be
transformed to the following linear form:

Ortiz et al.

2616 Protein Science, vol. 11

Ortiz et al. (2002) PMID:12381844

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373724/pdf/0112606.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2373724/pdf/0112606.pdf


Exercise
Build a Python script for structure superimposition using the class SVDSuperimposer 
from the biopython libraries.

Test the script on a group of atoms from the following structures

Human Cytochrome C – Uniprot:P99999. PDB: 3ZCF:A 
Equine Cytochrome C – Uniprot: P00004. PDB 3O20:A

Cytochrome C (Homo vs. Rhodopseudomonas palustris)

Human Cytochrome C - Uniprot:P99999. PDB: 3ZCF:A
Cytochrome C2 Rhodopseudomons pal. – Uniprot: P00091. PDB 1I8O:A

Structural alignment: 
RMSD= 0,13 nm
29% sequence identity

1:A                20:A                40:A                   60:A         
|        |    .    |    .    |    .    |    .    |    .       |    .  
GDVEKGKKIFIMKCSQCHTVEKGGKHKTGPNLHGLFGRKTGQAPGYSYTAANKNKG---IIWGEDTLMEY
.|...|..:|. .|..||..   .|...||.|.|..|||.|.|.|:.|...|.|.|   ::|..|.:..|
xDAKAGEAVFK-QCMTCHRA---DKNMVGPALAGVVGRKAGTAAGFTYSPLNHNSGEAGLVWTADNIVPY
|        |     .       |    .    |    .    |    .    |    .    |    . 
1:A                    20:A                40:A                60:A         

80:A                100:A        
|    .                  |    .    |    .    |  

LENPKKYIP--------------GTKMIFVGIKKKEERADLIAYLKKAT
|..|..::.              .|||.| .:...::|.|.:|||....
LADPNAFLKKFLTEKGKADQAVGVTKMTF-KLANEQQRKDVVAYLATLK

|    .    |    .    |    .     |    .    |    
80:A                 100:A         

Cytochrome C (Homo vs. Horse)

Human Cytochrome C - Uniprot:P99999. PDB: 3ZCF:A
Equine Cytochrome C – Uniprot: P00004. PDB 3O20:A

Structural alignment: 
RMSD= 0,035 nm
88% sequence identity

1:A                20:A                40:A                60:A         
|        |    .    |    .    |    .    |    .    |    .    |    .    |
GDVEKGKKIFIMKCSQCHTVEKGGKHKTGPNLHGLFGRKTGQAPGYSYTAANKNKGIIWGEDTLMEYLEN
||||||||||:.||.||||||||||||||||||||||||||||||:.||.|||||||.|.|:||||||||
GDVEKGKKIFVQKCAQCHTVEKGGKHKTGPNLHGLFGRKTGQAPGFTYTDANKNKGITWKEETLMEYLEN
|        |    .    |    .    |    .    |    .    |    .    |    .    |
1:A                20:A                40:A                60:A         

80:A                100:A        
.    |    .    |    .    |    

PKKYIPGTKMIFVGIKKKEERADLIAYLKKATNE
||||||||||||.|||||.||.||||||||||||
PKKYIPGTKMIFAGIKKKTEREDLIAYLKKATNE

.    |    .    |    .    |    
80:A                100:A 



RNA structure
Primary Structure
>Mutant Rat 28S rRNA sarcin/ricin domain  
GGUGCUCAGUAUGAGAAGAACCGCACC

5’

3’

HAIRPIN

BULGE
Secondary Structure
>Mutant Rat 28S rRNA sarcin/ricin domain  
GGUGCUCAGUAUGAGAAGAACCGCACC  
((((((((.((((..))))))))))))

Tertiary Structure
Secondary structure interactions and other 
interactions such as pseudoknots, hairpin-
hairpin interactions, etc. 



Dataset distribution

tRNA

20 of 
>1,000n

407 of <20n



Atom selection
The best backbone atom that 
represents the RNA structure 
has been selected by evaluating 
the distribution of the distances 
between consecutive atoms in 
structures from the NR95 set.



Background distribution
Considering a dataset of 300 random RNA structures, we have produced ~45,000 
pairwise alignments that resulted in a empirical distribution. From such distribution 
we can then evaluate μ and σ needed to calculated the p-value for P(s>=x). 

Empirical Analytic

Karlin and Altschul, (1990) PMID: 2315319

P(s ≥ x) = 1− exp(−e−λ (s−µ ) )

https://www.pnas.org/content/pnas/87/6/2264.full.pdf
https://www.pnas.org/content/pnas/87/6/2264.full.pdf


Mean and sigma
The score distribution depends on the length of the molecule.  

We divided the resulting structural 
alignments (∼45,000) in 30 bins 
according to the minimum sequence 
length of the two random structures 
(N).
For each bin the μ and σ values are 
evaluated fitting the data to an EVD.
The relations between N and μ, σ 
values are extrapolate fitting them to a 
power low function (r≈0.99). 

0 50 100 150 200 250 300
N (Length of the shorter RNA structure)
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μ=763*N-0.896

σ=180* N-1.010

μ 
an

d 
σ

Capriotti and Marti-Renom (2008) PMID: 18689811

https://pubmed.ncbi.nlm.nih.gov/18689811/
https://pubmed.ncbi.nlm.nih.gov/18689811/


Optimization
The accuracy of SARA method depends of a large number of parameters. 

• C3’ and P backbone atoms for the unit vectors evaluation,
• k number of consecutive unit vectors, spamming from 3 to 9 and, 
• values of gap opening from -9 to 0 and gap extension for -0.8 to 0
• Secondary structure information 

Gap opening Gap extension k

Secondary structure -7.0 -0.6 3

No secondary structure -8.0 -0.2 7



PSI distribution 
all-against-all comparison of structures in the NR95 set

tRNA



Statistical significance 
all-against-all comparison of structures in the NR95 set



Comparison with ARTS

>1q96 Chain:A 
--------------------gugcucaguaugaga-----aga-accgcacc-------- 
>1un6 Chain:E 
ccggccacaccuacggggccugguuaguaccugggaaaccugggaauaccaggugccggc

Percentage of structure identity (PSI)   76.9% 
Percentage of sequence identity  20.0% 
Percentage of SSE identity 79.2%
RMSD 1.66Å

ARTS

>1q96 Chain:A 
-------------------ggugcucaguaugag--------aagaaccgcacc------- 
>1un6 Chain:E 
gccggccacaccuacggggccugguuaguaccugggaaaccugggaauaccaggugccggc

Percentage of structure identity (PSI)   92.6% 
Percentage of sequence identity  48.0% 
Percentage of SSE identity 100.0%
RMSD 1.78 Å

SARA

PSI:  % of structure identity
PSS: % of secondary structure identity
Cut-off distance: 4.0 Å



Background distributions
Fitting of the  μ and σ values. μ (blue) and σ (orange) parameters for PID, PSS and PSI that 
best fit an extreme value distribution.  The distributions have been calculated using a set of 
50,995 alignments between pairs of unrelated RNA. 

!

!

!

!

!

!

!

PID PSS PSI



Predicting RNA function

•The main idea behind this experiment is trying to predict RNA function using 3D 
structural alignments.

•We aligned an RNA structure with unknown function against the whole set of RNA 
structures annotated in SCOR database.

•The RNA function is inferred assigning the same function of the RNA the alignment 
with highest mean -ln(p-value).

•The method is tested using a leaving one out procedure on the whole annotated RNA 
structures in SCOR database.     



Function assignment

Capriotti and Marti-Renom. (2009), PMID: 19483098

The accuracy of corrected function (QCF) and similar function (QSF) assignment tasks 
has been plotted as a function of the mean negative logarithm of the P-values for the 
best alignment. In (A) the plot results from leave one out on all SCOR set and (B) the 
performances using a representative SCOR subset   

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703911/pdf/gkp433.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703911/pdf/gkp433.pdf


Prediction example
1t1s chain A (cyan) is a RNA Aptamer that recognizes the chromophore 
malachite green. The structure ranked in the first position 1q8nA (green) 
has been classified as Malachite green binding Aptamer. The second 
structure is another Aptamer binding a different ligand. 



SARA server
The accuracy of corrected function (QCF) and similar function (QSF) assignment tasks has been plotted 

http://structure.biofold.org/sara 

SERVER DETAILS

Pair-wise structure alignment

The SARA server for structure alignment requires the
input of either two PDB/NDB codes or two coordinates
files in PDB format (Figure 2A). Alternatively, the user
can manually modify the default options of the SARA
program by unchecking the ‘default options’ check box.
Optional parameters include the open and extension gap

penalties to be used during dynamic programming, the
number of consecutive atoms to use in the unit-vector
representation, the use of secondary structure information
calculated by the 3DNA program, and the type of atom
selected for calculating the unit vectors. When the second-
ary structure information option is selected, but the
3DNA program cannot calculate any base-pairs, SARA
will use the single atom unit-vector alignment method.
Moreover, the SARA server also aligns two RNA struc-
tures in the case when one of the two PDB contains only a

Figure 1. Accuracy of structure-based function assignment by the
SARA program. (A) QCF, QSF and dataset coverage as a function of
the mean logarithm of the P-values for PSI, PSS and PID scores for the
leave-one-out benchmark using the FSCOR dataset. (B) Same repre-
sentation as in panel A for the T-FSCOR benchmark dataset using the
R-FSCOR dataset for searching.

Figure 2. User interface for the SARA server. (A) Pair-wise structure
alignment. (B) Structure-based function assignment. Both panels
include snapshots of the actual user interface as well as a flowchart
of the actions taken by the back-end SARA program. User input and
output are enclosed within the orange and green dashed areas,
respectively.

Nucleic Acids Research, 2009, Vol. 37, Web Server issue W263
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Capriotti and Marti-Renom. (2009), PMID: 19483098

http://structure.biofold.org/sara
http://structure.biofold.org/sara
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703911/pdf/gkp433.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2703911/pdf/gkp433.pdf


Defining RNA structural space

•With the increasing number of available RNA structures we did the first attempt to 
define RNA structural space. 

•We aligned aligned all against all a set of 451 non identical RNA structures and we 
selected a subset 589 high quality alignments.

•The relationship between sequence identity, secondary structure identity and 3D 
structure identity have be quantified

•We defined the twilight zone for RNA aligning all against all the sequences of same 
set of RNA using Infernal.  



RNA structure space
The percentage of sequence identity (PID) correlates with the percentage of structure identity 
(PSI). Higher correlation coefficient is found between sequence identity and the RMSD value on 
the  subset of atoms corresponding to equivalent residues. The correlation decreases in the region 
of sequence identity lower than 60%. 



RNA secondary structure
Secondary structure identity (PSS) strongly correlates with tertiary structure identity (PSI), meaning 
that good secondary structure alignments correspond to high tertiary structure similarity. The 
percentage of sequence identity (PID) poorly correlates with the percentage of secondary structure 
identity (PSS). This results is in agreement with low accuracy in the prediction of secondary 
structure. 



Alignment examples (I) 
Examples of medium quality RNA structural alignments for group I ribozyme 
and tRNA.

Capriotti and Marti-Renom BMC Bioinformatics 2010, 11:322
http://www.biomedcentral.com/1471-2105/11/322
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Figure 1 Accurate RNA structure alignments. (A) Staphylococcus phage group I ribozyme (1y0q PDB identifier, chain A) superimposed to a fragment 
a synthetic construct group I Intron (1u6b PDB identifier, chain B). (B) tRNA(Leu) of Pyrococcus horikoshii (1wz2 PDB identifier, chain C) superimposed 
to the tRNA(Met) of Acuifex aeolicus (2ct8 PDB identifier, chain C). (C) Superimposition of two synthetic constructs P4-P6 RNA ribozyme domain (1l8v 
and 2r8s PDB identifiers, chains A and R). (D) 23S ribosomal RNA of Haloarcula marismortui (3cce PDB identifier, chains 0) superimposed to the 23S 
ribosomal RNA of Thermus thermophilus (3d5b PDB identifier, chain A).

Staphylococcus phage group I ribozyme (1y0q:A)
Synthetic I Intron fragment (1u6b:B)

Aligned nucleotides:    120
RMSD:       1.8 Å
Sequence Identity:    34.0 %
Secondary Structure Identity:  52.1 %
Structure Identity:    60.9 %
Sequence -ln(p-value):   18.2
Secondary structure -ln(p-value): 10.3
Structure -ln(p-value):   15.6
Mean -ln(p-value):     14.7

Synthetic P4-P6 RNA ribozyme (1l8v:A)
Synthetic P4-P6 RNA ribozyme (2r8s:R)

Aligned nucleotides:    134
RMSD:       1.8 Å
Sequence Identity:    80.9 %
Secondary Structure Identity:  81.0 %
Structure Identity:    85.4 %
Sequence -ln(p-value):   37.0
Secondary structure -ln(p-value): 17.1
Structure -ln(p-value):   19.4
Mean -ln(p-value):     24.5

Pyrococcus horikoshii tRNA(Leu) (1wz2:C)
Acuifex aeolicus tRNA(Met) (2ct8:C)

Aligned nucleotides:     65
RMSD:       1.9 Å
Sequence Identity:    56.8 %
Secondary Structure Identity:  88.5 %
Structure Identity:    87.8 %
Sequence -ln(p-value):   10.2
Secondary structure -ln(p-value):  5.2
Structure -ln(p-value):    7.2
Mean -ln(p-value):      7.5

A

DC

B

Haloarcula marismortui 23S RNA (3cce:0)
Thermus thermophilus 23S RNA (3d5b:A)

Aligned nucleotides:      2,347
RMSD:       1.7 Å
Sequence Identity:    52.7 %
Secondary Structure Identity:  75.7 %
Structure Identity:    85.2 %
Sequence -ln(p-value):   37.0
Secondary structure -ln(p-value): 37.0
Structure -ln(p-value):   37.0
Mean -ln(p-value):     37.0



Alignment examples (II) 

Capriotti and Marti-Renom BMC Bioinformatics 2010, 11:322
http://www.biomedcentral.com/1471-2105/11/322
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Figure 1 Accurate RNA structure alignments. (A) Staphylococcus phage group I ribozyme (1y0q PDB identifier, chain A) superimposed to a fragment 
a synthetic construct group I Intron (1u6b PDB identifier, chain B). (B) tRNA(Leu) of Pyrococcus horikoshii (1wz2 PDB identifier, chain C) superimposed 
to the tRNA(Met) of Acuifex aeolicus (2ct8 PDB identifier, chain C). (C) Superimposition of two synthetic constructs P4-P6 RNA ribozyme domain (1l8v 
and 2r8s PDB identifiers, chains A and R). (D) 23S ribosomal RNA of Haloarcula marismortui (3cce PDB identifier, chains 0) superimposed to the 23S 
ribosomal RNA of Thermus thermophilus (3d5b PDB identifier, chain A).

Staphylococcus phage group I ribozyme (1y0q:A)
Synthetic I Intron fragment (1u6b:B)

Aligned nucleotides:    120
RMSD:       1.8 Å
Sequence Identity:    34.0 %
Secondary Structure Identity:  52.1 %
Structure Identity:    60.9 %
Sequence -ln(p-value):   18.2
Secondary structure -ln(p-value): 10.3
Structure -ln(p-value):   15.6
Mean -ln(p-value):     14.7

Synthetic P4-P6 RNA ribozyme (1l8v:A)
Synthetic P4-P6 RNA ribozyme (2r8s:R)

Aligned nucleotides:    134
RMSD:       1.8 Å
Sequence Identity:    80.9 %
Secondary Structure Identity:  81.0 %
Structure Identity:    85.4 %
Sequence -ln(p-value):   37.0
Secondary structure -ln(p-value): 17.1
Structure -ln(p-value):   19.4
Mean -ln(p-value):     24.5

Pyrococcus horikoshii tRNA(Leu) (1wz2:C)
Acuifex aeolicus tRNA(Met) (2ct8:C)

Aligned nucleotides:     65
RMSD:       1.9 Å
Sequence Identity:    56.8 %
Secondary Structure Identity:  88.5 %
Structure Identity:    87.8 %
Sequence -ln(p-value):   10.2
Secondary structure -ln(p-value):  5.2
Structure -ln(p-value):    7.2
Mean -ln(p-value):      7.5

A

DC

B

Haloarcula marismortui 23S RNA (3cce:0)
Thermus thermophilus 23S RNA (3d5b:A)

Aligned nucleotides:      2,347
RMSD:       1.7 Å
Sequence Identity:    52.7 %
Secondary Structure Identity:  75.7 %
Structure Identity:    85.2 %
Sequence -ln(p-value):   37.0
Secondary structure -ln(p-value): 37.0
Structure -ln(p-value):   37.0
Mean -ln(p-value):     37.0

Examples of high quality RNA structural alignments for P4-P6 RNA ribozyme 
and 23S RNA



RNA twilight zone

Capriotti and Marti-Renom (2010) PMID: 20550657

It is possible to calculate the twilight-zone curve that better discriminates between high and low 
quality alignments.

Log10(e-value)=3.11+362*e-0.08N

r=0.85
p=1.6*10-2

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904352/pdf/1471-2105-11-322.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904352/pdf/1471-2105-11-322.pdf

