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Personalized medicine

Currently direct to consumers company are performing genotype test on markers
associated to genetic traits, and and soon full genome sequencing will cost
about 10003%.

The future bioinformatics challenges ﬂ
for personalized medicine will be: "l Sy

1. Processing Large-Scale Robust
GenomiC Data Pharmaco- Personal

Genomics Genomics

2. Interpretation of the Functional
Effect and the Impact of Genomic
Variation

Personalized
9e

Medicine

. Je €
3. Integrating Systems and Data to Y4

Capture Complexity

Medicine

4. Making it all clinically relevant

Fernald GH, et al (2011). Bioinformatics. 27: 1741-1748.



Single Nucleotide Variants

Single Nucleotide Variants (SNVs)

is a DNA sequence variation occurring when a single nucleotide A, T, C, or G in the

genome differs between members of the species.

It is used to refer to Polymorphisms when the population frequency is = 1%

SNVs occur at any position and can be
classified on the base of their locations.

Coding SNVs can be subdivided into two

groups:

Synonymous: when single base substitutions do
not cause a change in the resultant amino acid

Non-synonymous or Single Amino Acid Variants
(SAVs): when single base substitutions cause a

change in the resultant amino acid.
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Effects of variants

It is important to understand the functional effect of Single Nucleotide
Polymorphisms (SNPs) that are very common type of variations, but also the
impact rare variants which have allele frequencies below than 1%

Impact of coding variants
* Properties of amino acid residue substitution
* The evolutionary history of an amino acid position
» Sequence-function relationships
» Structure—function relationships

Impact of non-coding variants

e Transcription

* Pre-mRNA splicing

* MicroRNA binding

 Altering post-translational modification sites

Cline and Karchin (2011) Bioinformatics, 27; 441-448.



1000 Genomes

The 1000 Genomes Project aims to create the largest public catalogue of
human variations and genotype data. Last version released the genotype of
~2,500 individuals.

Table 1 | Variants discovered by project, type, population and novelty

a Summary of project data including combined exon populations

Low coverage Trios

Exon Union across

Statistic CEU YRI CHB+JPT Total CEU YRI Total (total) projects
Samples 60 59 60 179 3 3 6 697 742
Total raw bases (Gb) 1,402 874 596 2,872 560 615 1,175 845 4,892
Total mapped bases (Gb) 817 596 468 1,881 369 342 711 56 2,648
Mean mapped depth (X) 4.62 3.42 2.65 3.56 43.14 40.05 41.60 55.92 NA
Bases accessed (% of genome) 243 Gb 2.39 Gb 241 Gb 242 Gb 2.26 Gb 2.21 Gb 224Gb 1.4 Mb NA

(86%) (85%) (85%) (86.0%) (79%) (78%) (79%)

No. of SNPs (% novel) 7943827 10938130 6,273,441 14894361 3,646,764 4502439 5907699 12,758 15,275,256
(339%) (479) (28%) (RAZ) (11%) (23%) (2497) (ZQ%) (BB %)
Mean variant SNP sites per individual 2918623 3,335,795 2,810,573 3,019909 2,741,276 3,261,036 3,001,156 763 NA
No. of indels (% novel) 728,075 941,567 666,639 1,330,158 411,611 502,462 682,148 96 1,480,877
(39%) (52%) (39%) (57%) (25%) (37%) 38%)  (74%) (57%)
Mean variant indel sites per individual 354,767 383,200 347,400 361,669 322,078 382,869 352,474 3 NA
No. of deletions (% novel) ND ND ND 15,893 6,593 8,129 11,248 ND 22,025
(60%) (41%) (50%) (51%) (61%)
No. of genotyped deletions (% novel) ND ND ND 10,742 ND ND 6,317 ND 13,826
(57%) (48%) (58%)
No. of duplications (% novel) 259 320 280 407 187 192 256 ND 501
(90%) (90%) (91%) (89%) (93%) (91%) (92%) (89%)
No. of mobile element insertions (% novel) 3,202 3,105 1,952 4775 1,397 1,846 2,531 ND 5,370
(79%) (84%) (76%) (86%) (68%) (78%) (78%) (87%)
No. of novel sequence insertions (% novel) ND ND ND ND 111 66 174 ND 174
(96%) (86%) (93%) (93%)

1000 Genomes Project Consortium (2010). Nature. 467: 1061-1073.




SNVs and SAVs databases

dbSNP Mar 2018) @ NCBI

http://www.ncbi.nim.nih.gov/snp

SwissVar (Oct 2018) @ ExPASy
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http://www.expasy.ch/swissvar/

Single Nucleotide Variants

Homo sapiens 113,862,023
Gallus gallus 15,104,956
Zea mays 14,672,946

Single Amino acid Variants

Homo sapiens 76,608
Disease 29,529
Polymorphisms 39,779

Oct 2018
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SNVs and

Single Nucleotide Variants (SNVs) are
the most common type of genetic
variations in human accounting for more
than 90% of sequence differences (1000
Genome Project Consortium, 2012).

10,000

SNVs can also be responsible of genetic
diseases (Ng and Henikoff, 2002; Bell,
2004).
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Sequence, Structure & Function

Genomic variants in sequence motifs could affect protein function.
Mutation S362A of P53 affect the interaction with hydrolase USP7 and the
deubiquitination of the protein.

P S362
- e ——
Transcription Interaction Interaction Interaction Interaction
activation with WWOX with SH3  with DNA with USP7

Nonsynonymous variants responsible
for protein structural changes and
cause loss of stability of the folded
protein.

Mutation R411L removes the salt
bridge stabilizing the structure of the
IVD dehydrogenase.




What predictions?

Given the large amount of available mutations what can we predict?

Develop binary classifiers to predict the impact of mutations on:

e Protein Structure
e Protein Function
e Human Health

Structural changes upon mutation can be predicted using comparative
modeling approaches.

Functional changes can be predicted from experimental data collected in
PMD database (at http://www.genome.jp/dbget/)

Predicting the impact of mutation on human health is a more complex task
that requires the integration of several source of information.
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Simple Predictor

A simple method can be developed predicting the impact of mutations using

BLOSUMG62 substitution matrix.

BLOSUM®é62
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BLOSUMG62 Predictions

It is possible to plot the ROC curve of
the predictions moving BLOSUMG62
threshold from -4 to 3.

We can calculate the Area Under the
Curve and optimize the prediction
threshold.

TPR

If we use a threshold equal to -1 the
method result in 64% overall accuracy
and 0.24 Matthews’ correlation

. Area= 0.65
coefficient 0.0 | | | .

0.0 0.2 0.4 0.6 0.8 1.0
FPR

Q2 P[D] S[D] P[N] S[N] C

BLOSUMG62 0.64 0.67 0.77 0.59 0.47 0.24




Accuracy measures

TP +TN Actual values
Overall Accuracy 2= itiv iv
O = P FN+TN + FP | Dostve | Megatve
o 9
< TP FP
TP s -
Sensitivity S = 2
TP+FN % GZJ
EE EN TN
prd
Precision P = Ir
TP + FP

TP xTN - FP x FN
\J@TP + FP)x (TP + FN) x (TN + FP)x (TN + FN)

Correlation C =




Receiving Operator Curve

A :
TN « TP
True Positive Rate TPR = r E
TP+ FN
FP E
False Positive Rate FPR =
FP +TN A il

The Area Under the ROC Curve (AUC) is an
accuracy measure that is 0.5 for completely

random predictors and close to 1.0 for highly
accurate predictors.

TPR

Baldi et al. (2000) Bioinformatics, 16:412-424

0 FPR 1
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Sequence profile

The protein sequence profile is calculated running BLAST on the UniRef90 dataset and
selecting only the hits with e-value < 10-°.

The frequency distributions of the wild-type residues for disease-related and neutral variants
are significantly different (KS p-value=0).
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Capriotti et al (2012). Briefings in Bioinformatics. 13; 495-512.



Machine learning

e Computational approach to build models based on the analysis of
empirical data.

* Machine learning algorithms are suitable to address problems for which
analytic solution does not exists and large amount of data are available.

* They are implemented selecting a representative set of data that are used
In a training step and then validated on a test set with data “not seen”
during the training.

* Most popular machine learning approaches are in computational biology
are Neural Networks, Support Vector Machines and Random Forest.



Binary classifiers

e Support Vector Machine (SVM): Maps positive and negative training
examples to a high-dimensional space in which they can be distinguished
from each other.

e Artificial Neural Network (ANN): multi-layer network of nodes, including
input features, outputs, and one or more hidden layers. Weights of input
and output edges connecting nodes are adjusted to maximize prediction
accuracy.

 Random Forest (RF): Trains an “ensemble” of decision trees to distinguish
positive from negative training examples, utilizing a random set of input
features.

e Naive Bayes Classifiers: Probabilistic classifier that treats each feature as
independent of the others; parameters are adjusted to maximize the
probability of impact for positive examples and minimize probability for
negative examples.



Hybrid method structure

Hybrid Method is based on a decision tree with SVM-Sequence coupled to
SVM-Profile. Tested on more than 21,000 variants our method reaches 74%
of accuracy and 0.46 correlation coefficient.
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Capiriotti et al. (2006) Bioinformatics, 22; 2729-2734.



Classification results

SVM-Sequence is more accurate in the prediction of disease related mutations and
SVM-Profile is more accurate in the prediction of neutral polymorphism.
Both methods have the same Q2 level.

Q2 P[D] | Q[D] | PIN] | QIN] C
SVM-Sequence | 0.70 | 0.71 084 | 065 | 046 | 0.34
SVM-Profile 0.70 | 0.74 | 049 | 068 | 0.86 | 0.39
HybridMeth 0.74 | 080 | 0.76 | 0.65 | 0.70 | 0.46

D = Disease related N = Neutral

The Hybrid Method have higher accuracy than the previous two methods
iIncreasing the accuracy up to 74% and the correlation coefficient up to 0.46.

http://snps.biofold.org/phd-snp
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Selective pressure

In genetics, the Ka/Ks ratio is an indicator of selective pressure acting on a
protein-coding gene.

It is calculated as the ratio of the number of nonsynonymous substitutions per
non-synonymous site (Ka), to the number of synonymous substitutions per
synonymous site (Ks), in a given period of time.

Homologous genes with:
e Ka/Ks ratio >> 1 (positive selection): mutations must be advantageous.
e Ka/Ks ratio ~ 1 (neutral selection): advantageous ~ disadvantageous

e Ka/Ks ratio << 0 (negative selection): mutations are disadvantageous

The ratio, also known as w or dN/dS, can be calculated at gene and site levels.

from Wikipedia



The omega values

In a previous work performed on 40 human disease genes, has been demonstrated that
residues evolving under strong selective pressures (w<0.1) are significantly associated with
nhuman disease (Arbiza et al. JMB, 2006).

We carried out a similar analysis 1.0
on the dataset extracted from
SwissProt and we found a 0.8 -
statistically significant association
between high selective pressures 0.6 -
and disease in contrast to low
selective pressures and neutral S
polymorphic variants in human. 0.4
0.2 1
dN I SN N S
0 = — e —
dS 0.0 ;

Disease Polymorphism

Capiriotti et al. (2008) Human Mutation, 29: 198-204.



True Positive Rate

Omega-based method

SegProfCod has higher accuracy than the previous two methods increasing the
accuracy up to 82% and the correlation coefficient to 0.59.

Q2 P[D] | Q[D] | P[N] | Q[N] C
SeqProfCod 0.82 0.88 0.84 0.68 0.76 0.59
) /—-—"—"E— Seq
7 SeqCod
7 SeqProf
0.8 7/ = == SeqProfCod :
4 %
06 / // c 06-L—
IS 3 |
/ g 0.5 —
0.4 w 0.4
/ oa- g
0.2- i 0.2
[ Area SeqProfCod = 0.88 0.1 ;
0.0 | T , , 0.0 T T : | | I
0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4 5 6 7

False Positive Rate

Q2: Overall Accuracy C: Correlation Coefficient DB: Fraction of database that are predicted with a reliability > the given threshold



Gene Ontology

The Gene Ontology project is a major bioinformatics e —
initiative with the aim of standardizing the

representation of gene and gene product attributes “E"ithe Gene On tOlOgy
across species and databases. The project provides —
a controlled vocabulary of terms for describing gene http://wnaw.geneontology.org/

product characteristics and gene product
annotation data.

The ontology is represented by a direct acyclic graph covers three domains;
e cellular component, the parts of a cell or its extracellular environment;

e molecular function, the elemental activities of a gene product at the molecular level, such as
binding or catalysis

e biological process, operations or sets of molecular events with a defined beginning and end,
pertinent to the functioning of integrated living units: cells,tissues, organs and organisms.



http://www.geneontology.org/GO.downloads.ontology.shtml
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Sequence information is encoded in 2 vectors
each one composed by 20 elements. The first
vector encodes for the mutation and the
second one for the sequence environment

Protein sequence profile information derived
from a multiple sequence alignment. It is
encoded in a 5 elements vector corresponding
to different features general and local features

The GO information are encoded in a 2 elements
vector corresponding to the number unique of
GO terms associated to the protein sequences
and the sum of the logarithm of the total number

of disease-related and neutral variants for each
GO term.



SNPs&GO performance

SNPs&GO results in better performance with respect to previously developed methods.

Mutation (Mut) Sequence Environment (Seq) Profile (Prof) | PANTHER | LGO (F)
ACDEFGHIKLMNPQRSTVWY| ACDEFGHIKLMNPQRSTVWY |FuFuNeNCl [P P PuNe| Neoleo
[ I IOOOOOIOOOOI ll]
RBF Kernel
[ Output ]

Method Q2 P[D] Q[D] P[N] Q[N] C PM

PolyPhen 0.71 0.76 0.75 0.63 0.64 0.39 58

SIFT 0.76 0.75 0.76 0.77 0.75 0.52 93

PANTHER 0.74 0.77 0.73 0.71 0.76 0.48 76

SNPs&GO 0.82 0.83 0.78 0.80 0.85 0.63 100
D = Disease related N = Neutral DB= 33672 nsSNVs

Calabrese et al. (2009) Human Mutation 30, 1237-1244.



SwissVar data

SwissVar (October 2009)
e Disease variants: 22,771
e Neutral variants: 34,258

e Unclassified variants: 2,269
e Total: 59,298

» Disease-related mutations not clearly annotated are removed.

* Mutations related to more than one disease are considered only once.

Training set
After this filter we collected 17,993 Disease mutations from 1,424 proteins
that are balanced with the same number of neutral polymorphisms.



Protein structure data

The mapping of SwissVar mutations data on the structures available on the PDB is a
difficult task. The main problems for this task are:

e incomplete PDB structures

e differences between Swiss-Prot protein sequence and PDB sequence
e different residue numeration

The mapping procedure is performed using a pre-filtered list of correspondences
between Swiss-Prot and PDB.

All Swiss-Prot/PDB pairs in the list are aligned using BLAST. To have a good overlap
between sequence and structure | filtered the list of alignments removing those:

* with = 1 gaps

« sequence identity < 100%
 shorter than 40 residues

If one mutation maps on more than one PDB the one with lower resolution is selected



3D Structure Dataset

After the mapping procedure the final dataset of mutations with known 3D structure is
composed by

e Disease variants: 3,342
e Neutral variants: 1,644
e Total: 4,986

from 784 chains from 770 structures (584 X-ray, 92 NMR and 94 models).
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Structure environment

There is a significant difference (p-value KS < 0.001) between the distributions of
the relative Accessible Solvent Area for disease-related and neutral variants.
Their mean values are respectively 20.6 and 35.7.
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Analysis of the 3D interactions

Using the whole set of SAVs with known structure, we calculate the log odd score of
the ratio between the frequencies of the interaction between residue i and | for
disease-related and neural variants.
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The structure-based method

The method takes in to account 5 different types of information encoded in a 52 elements
vector. The input features are: mutation data; structure environment, sequence profile and
functional score based on GO terms.

Mutation (Mut) Structure Environment (3D) Profile (Prof) | PANTHER | LGO (F)
ACDEFGHI KLMNPQRSTVWY]JACDEFGHIKLMNPQRSTVWYRSAJF, Fv Ns N: Cl | Po P. Pu N

| @0000E00000008080000 0 |00000 )| 0000). N.L. J

RBF Kernel

G43

C46W

Mutated Aminoacid 0<R<2A 2<R<4A B4<RrR<6A



Sequence vs structure

The structure-based method results in better accuracy with respect to the sequence-
based one. Structure based prediction are 3% more accurate and correlation
coefficient increases of 0.06. If 10% of FPR are accepted the TPR increases of 7%.

Q2 P[D] S[D] P[N] S[N] C AUC
SNPs&GO 0.82 0.81 0.83 0.82 0.81 0.64 0.89
SNPs&GO3d| 0.85 0.84 0.87 0.86 0.83 0.70 0.92

A 1.0

0.8

0.6

TPR

0.4

0.2 . 0.2

SNPs&GO3 “ 22
SNPS&GO = = = = &) DB
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FPR RI



Accuracy vs Accessibility

The predictions are more accurate for mutations occurring in buried region (0-30%). Mutations
of exposed residues results in lower accuracy.
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Prediction example

Damaging missing Cys-Cys interaction in the Glycosylasparaginase. The mutation
p.Cys163Ser results in the loss of the disulfide bridge between Cys163 and Cys179.
This SAP is responsible for Aspartylglucosaminuria.
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SNPs&GO web server

A

SN PS & GO : . : . -M MutationJ Annotation

SNPs&GO
iated variations using GO terms

Predicting

Mutations:|D107H 1387T C613R K8S8R Comma or blank separated
/| mutations

All methods: () Returns also PhD-SNP predictions

Mutation: WT+POS+NEW
WT: Residue in wild-type protein
POS: Residue position
NEW: New residue after mutation

Support Vector Machines

e-mail address (optional) Prediction:
Neutral: Neutral variation
GCexr | [ Subms. Disease: Disease associated variation

RI: Reliability Index

4
L}
1
]
L]
L Sequence File: FA5_HUMAN.seq
] Alignment File: FAS_HUMAN.seq.blast
1 GO-terms FAS5_HUMAN.seq.go
. Output File: output.txt
1
SNPs&GO 1 FKKIVYREYE PYFKKEKPQS TISCLLGPTL YAEVCDIIKV HFKNKADKPL SIHPQGIRYS
Predicti di iated variati using GO terms 1 130 140 150 160 180
1 IYYSHENLIE
1 190 200 210 220 230 240
Protein Sequence:|>FAS_HUMAN One letter residue code 1 DFNSGLIGPL
MFPGCPRLWVLVVLGTSWVGWGSQGTEAA example 1 -> output 1 [
Y REYENPRKECPOSTISGLLEPTLYAEY 1 TMPDITVCAH DHISWHLLGM SSCPELFSIH FNGQVLEQNH HKVSAITLVS ATSTTANMTV
(GDIIKVHFKNKADKPLSIHPQGIRYSKLSEGAS 1
'YLDHTFPAEKMDDAVAPGREYTYEWSISEDS
‘GPTHDDPPCLTHIYYSHENLIEDFNSGLIGPLL ]
ICKKGTLTEGGTQKTFDKQIVLLFAVFDESKS, 1 Mutation  Prediction RI Method
1 D107H N 15 0.240 PANTHER: F[D}=28% F[H]=5%
Seq le: Cheasesie | No file chosen or Sequence file eutral . 0] TH)
F=lil =L 1 Neutral 4 0.312 SNPs&GO
Rt Z;:r:f.:;c'l e ' 13877 Neutral 4 0.296 PANTHER: F[1}=25% FT}=3%
1 Disease 7 0.835 SNPs&GO
L}
GO terms:[G0:0007155 GO.0007596 GO.0016491 |  Gene Ontalogy terms . C613R Disease 0 0.510 PANTHER: F[C]=32% FIR]=1%
G0:0031093 GO.0046872 GO-0055114,, Disease 8 0.895 SNPs&GO
]
1 K858R Neutral 10 0.068 SNPs&GO
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Probability: Disease probability (if >0.5 mutation is predicted Disease)
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SNPs&GO
Predicting disease-related SNPs using GO terms

s N P S & G O H : . T Structure Mutation Annotation

PDB File: pdblcdf.spdb Chain: A

Alignment File: pdblcdf.spdb.blast
GO-terms File: pdblcdf.spdb.seq.go
Output File: output.txt

SNPs&GO™ Sequence

Pr variati using GO terms

PDB code: 1C0F Protein Data Bank code
example 1 -> output 1
Structure file: | Cheose i | No file chosen
Chain: A

Swiss-Prot code: TNRS_HUMAN GO terms from Swiss-Prot
example 2 -> output 2

somms Jeemeeeem
A

Mutation  Prediction RI Probability Method
Mutations:|C26Q C83R S124L Comma or blank separated

| AT €26Q Disease 7 0.828 $3D-PROF: FIC]=100% F[Q]=0% Nall=51 RSA=8

Disease 8 0.887 PANTHER: FIC1=80% FIQ]=0%

< 2 Disease 9 0.925 SNPS&GO

All methods: @ SRS e Disease 9 0.960 S3Ds&GO

C83R 0.880 S3D-PROF: FIC]=100% FIR]=0% Nali=87 RSA=14

R — 8
e-mail: e-mail address (optional) Support Vector Machines ig g.:;; PANTHER: F[c]:gvl%s;[:i;u;/;
[ Disease 9 0.970 S3Ds&GO

Gear | [Subms.

S124L Neutral 9 0.048 S3DPROF: F[S]=10% F[L]=8% Nali=85 RSA=86
Neutral 8 0.106 PANTHER: F[S]=10% F[L]=15%
Neutr; 6 0.148 SNPs&GO
Neutral 5 0.231 $3Ds&GO
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http://snps.biofold.org/snps-and-go

Capiriotti et al. (2013). BMC Genomics. 14 (S3), S6.
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SAVs Predictors

Many predictor of the effect of SAVs are available. They mainly use information from
multiple sequence alignment to predict the effect of a given mutation. In his study we
consider

e PhD-SNP: Support Vector Machine-based method using sequence and profile
information (Capriotti et al. 2006).

e PANTHER: Hidden Markov Model-based method using a HMM library of protein
families (Thomas and Kejariwal 2004).

e SNAP: Neural network based method to predict the functional effect of single poit
mutations (Bromberg et al. 2008).

e SIFT: Probabilistic method based on the analysis of multiple sequence alignments
(Ng and Henikoff 2003).



Predictors Accuracy

The accuracy of each predictor has been tested on a set of 35,986 mutations equally
distributed between disease-related and neutral polymorphisms. PhD-SNP results in
better accuracy but is the only one optimized using a cross-validation procedure.
SNAP shows lowest accuracy but it has been developed for a different task.

Q2 P[D] S[D] P[N] S[N] C PM

PhD-SNP 0.76 0.78 0.74 0.75 0.78 0.53 100

PANTHER 0.74 0.79 0.73 0.69 0.74 0.48 74

SNAP 0.64 0.59 0.90 0.79 0.38 0.33 100

SIFT 0.70 0.74 0.64 0.68 0.76 0.41 92

DB: Neutral 17883 and Disease 17883




SAVs Predictors

The higher correlation coefficient is between PANTHER and SIFT predictions. SNAP
shows low correlation with PhD-SNP and PANTHER but higher correlation with SIFT

which input is included in SNAP

C 0 PhD-SNP PANTHER SNAP SIFT
PhD-SNP - 0.76 0.64 0.78
PANTHER 0.51 - 0.67 0.79

SNAP 0.37 0.40 - 0.69
SIFT 0.55 0.58 0.48 -

DB: Neutral 17993 and Disease 17993




Predictors tree

Using the prediction similarity we can build the predictors tree

PhD-SNP SIFT

PANTHER

UPGMA tree based on correlations

SNAP
SIFT

'"PANTHER
PhD-SNP




Prediction Analysis

The accuracy of the predictions has been evaluated considering three different

subset

e Consensus: all the predictions returned by the methods are in agreement.

e Tie: equal number of methods predicting disease and polymorphism

e Majority: One of the two possible classes is predominant

Q2 P[D] | S[D] | P[N] | S[N] C AUC | %DB
PhD-SNP | 0.76 | 0.78 | 0.74 | 0.75 | 0.78 | 0.53 | 0.84 100
Consensus | 0.87 | 0.87 | 092 | 0.87 | 0.79 | 0.73 | 0.89 46
Majority 0.7/0 | 0.6/ | 0.56 | 0.72 | 0.80 | 0.37 | 0.82 40
Tie 0.61 0.51 043 | 0.e6 | 0.7/73 | 0.16 | 0.67 14




Frequency Wild-Type

Consensus subset

The distributions of the wild-type and new residues frequencies and CI for
disease-related variants and polymorphisms on the Consensus subset have
very little overlap.
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Tie subset

The distributions of the wild-type and new residues frequencies and Cl for
disease-related variants and polymorphisms on the Tie subset have almost
complete overlap.
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1.0

Majority subset

The distributions of the wild-type and new residues frequencies and CI
for disease-related and polymorphism on the Majority subset are in an
Intermediate situation with respect to the previous cases.
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The Meta-SNP is a RF-based meta predictor that takes in input *
the output of PhD-SNP, PANTHER, SNAP and SIFT.

Meta-SNP

input features from

The output of the methods can be analyzed dividing the dataset in consensus
predictions (all the methods in agree), tie predictions (same number of disease and
non-disease predictions) and other predictions (the remaining cases) .

P[D]

O

PANTHER

PhD-SNP
O[D] Fwt Fm

QOQOO

Random Forest

o

SIFT
Score

Output

http://snps.biofold.org/meta-snp

SNAP
NNout
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Meta-SNP accuracy

The Meta-Pred method results in better accuracy with respect to the PhD-SNP.

Q2 PID] S[D] PIN] S[N] C AUC | %DB
PhD-SNP 0.76 0.78 0.74 0.75 0.78 0.53 0.84 100
Meta-SNP 0.79 0.80 0.79 0.79 0.80 0.59 0.87 100
Consensus 0.87 0.88 0.92 0.87 0.80 0.73 0.91 46
Majority 0.75 0.72 0.64 0.76 0.82 0.47 0.82 40
Tie 0.69 0.62 0.57 0.73 0.76 0.34 0.75 14
DB: Neutral 17993 and Disease 17993
A 10 B
0.4 MetaPred = 0.87
PANTHER = 0.82 All = 0.87
PhD-SNP = 0.84 Consensus = 0.91
0.2 0.2
Other = 0.82
SNAP =0.79
0.0 T T T T 0.0 T T l I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

FPR FPR



Testing Meta-SNP

Performances of Meta-Pred on the test set of 972 variants from 577 proteins

Q2 P[D] S[D] P[N] S[N] C
Meta-SNP 0.79 0.79 0.80 0.80 0.79 0.59
PhD-SNP 0.77 0.78 0.77 0.77 0.78 0.55

TPR

DB: Neutral 486 and Disease 486

B
A
AN
_ 'S
0.4- MetaPred = 0.86 0.4- \
PhD-SNP = 0.84 \ \
02 Consensus = 0.91 . Q2 A .
Other = 0.83 —a— MCC \
—A DB 1
0.0 I I I ! 0.0 I I I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0 o 1 2 3 4 5 6 7 8 9
FPR RI

Capiriotti et al. (2013). BMC Genomics. 14 (S3), In press.



Whole-genome predictions

Most of the genetic variants occur in non-coding region that represents >98%
of the whole genome.
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Predict the effect of SNVs in non-coding region is a challenging task because
conservation is more difficult to estimate.

Sequence alignment is more complicated for sequences from non-coding regions.



PhyloP100 score

Conservation analysis based on the pre-calculated score available at the UCSC
revealed a significant difference between the distribution of the PhyloP100
scores in Pathogenic and Benign SNVs.
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Pathogenic Benign

PhyloP: Pollard et al,, Genome Research 2010



PhD-SNP¢

PhD-SNPgis a simple method that takes in input 35 sequence-based features
from a window of 5 nucleotides around the mutated position.

Sequence PhyloP
5 A C G T N 7 100
T 0 0 0 1 0 -0.6 | 0.9
C 0 1 0 0 0 1.0 1 0.0
G-A|| -1 0 1 0 0 1.0
T 0 0 0 1 0
A 1 0 0 0 0
3’ 25-element " 10-element

Gradient
Boosting

[ Probability]

http://snps.biofold.org/phd-snpg/
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set of 1,408 variants recently annotated.

Benchmarking

PhD-SNP9 has been tested in cross-validation on a set of 35,802 SNVs and on a blind

Q2 TNR NPV TPR PPV MCC F1 AUC
PhD-SNPs9 0.861 | 0.774 | 0.884 | 0.925 | 0.847 | 0.715 | 0.884 | 0.924
Coding 0.849 | 0.671 | 0.845 | 0.938 | 0.850 | 0.651 | 0.892 | 0.908
Non-Coding | 0.876 | 0.855 | 0.911 | 0.901 | 0.839 | 0.753 | 0.869 | 0.930
All Coding Non-Coding
1.0
0.8
0.6
3 & &
a = a 0.4
0.2 CADD =0.92 0.2 CADD = 0.91 0.2 CADD =0.92
FATHMM-MKL = 0.85 FATHMM-MKL = 0.86 FATHMM-MKL = 0.86
PhD-SNPg = 0.92 PhD-SNPg = 0.91 PhD-SNPg = 0.93
0.0 | | | | | 0.0 | | | | | 0.0 | | |
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 1.0
FPR FPR FPR
Capiriotti and Fariselli. (2017) Nucleic Acids Res. PMID: 28482034.




CAGI experiments

The Critical Assessment of Genome Interpretation is a community experiment to
objectively assess computational methods for predicting the phenotypic impacts of
genomic variation.

| [y  Register for CAGI e Request new password -
EX

Welcome to the CAGI experiment!

Overview The Critical Assessment of Genome Interpretation (CAGI, \'ka-j&\) is a community experiment to
Key Dates objectively assess computational methods for predicting the phenotypic impacts of genomic variation. In
Conference this experiment, modeled on the Critical Assessment of Structure Prediction (CASP), participants will be
Challenges provided genetic variants and will make predictions of resulting molecular, cellular, or organismal
Crohn's Disease phenotype. These predictions will be evaluated against experimental characterizations, and independent
BRCA assessors will perform the evaluations. Community workshops will be held to disseminate results, assess
Solicin our collective ability to make accurate and meaningful phenotypic predictions, and better understand
progress in the field. From this experiment, we expect to identify bottlenecks in genome interpretation,
MRN inform critical areas of future research, and connect researchers from diverse disciplines whose expertise
FCH is essential to methods for genome interpretation. We want to emphasize that CAGI is a community
HA experiment to understand and improve the interpretation of genome variation. It is not a contest and all
riskSNPs predictors are awarded recognition for their participation in the meeting.

- s

https://genomeinterpretation.org/
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The CAGI P16!NK challenge

The Critical Assessment of Genome Interpretation (CAGI) is a community
experiment to objectively assess computational methods for predicting
the phenotypic impacts of genomic variation.

Challenge: Predict how protein variants in p16 protein impact its ability to
block cell proliferation.

SNPs&GO among the best methods to
blindly predict the change in cell
proliferation associated to mutations
on P16INK (~70% accurate predictions).




SNPs&GO prediction

Proliferation rates have been predicted using the raw output of SNPs&GO without any fitting

Variant | Prediction Real A %YWT | %MUT
G23R 0.932 0.918 | 0.014 84 0
G23S 0.923 0.693 | 0.230 84 1
G23V 0.940 0.901 0.039 84 0
G23A 0.904 0.537 | 0.367 84 2
G23C 0.946 0.866 | 0.080 84 0
G35E 0.590 0.600 | 0.010 12 14
G35W 0.841 0.862 | 0.021 12 0
G35R 0.618 0.537 | 0.081 12 4
L65P 0.878 0.664 | 0.214 15 1
L94P 0.979 0.939 | 0.040 56 0




The complexity of cancer

Cancer is complex disorder characterized by high level of mutation rate.

Mutations can be classified in germline and somatic whether they are inherited
from parents or the result of error in DNA replication.

Another classification is between driver and passenger mutations whether they
provide selective advantage with respect to normal cells increasing their
proliferation rate or not.



Hallmarks of cancer

The six hallmarks of cancer - distinctive and complementary capabilities that
enable tumor growth and metastatic dissemination.

Sustaining proliferative
signaling

Resisting Evading growth
cell death SUpPpPressors

Inducing Activating invasion
angiogenesis and metastasis

Enabling replicative
immortality

Hanahan and Weinberg. Cell 2011, 144:646



Oncogene vs Suppressor

Oncogenes have highly recurrent mutations, Tumor suppressors have sparse variants.

¥ = Missense mutation
A = Truncating mutation

: B ,
N B o Fo0 B2 el Kinsse ' N o c
PIK3CA 1068 aa Substrate binding sites IDH1 44 aa
928 aa - & v 213 aa
N T-Ag and E1 A-blndlng ‘w N @ 5 aa repeats * Yot 'iBChC
Y TN Y W Y WY ) Ajp & A
331 VHL

Vogelstein et al. Science 2013, 339:1546



Main challenges

Computational methods for cancer genome interpretation have been developed to
address the following issues:

(a) 100% Tumor purity
® Detection of recurrent somatic mutations - - li]
. .
and cancer driver genes;
L
*
L ] .l
o ]
e Prediction of driver variants and their s [:J o
functional impact; Reterence gerome
(b) 60% Tumor purity
@) o
- [
e Estimate the impact of multiple variants .
at network and pathway level; .
-
L
o
Ll
e Differentiate subclonal populations and reeeR s
. .. =
their variation pattern. et o Sawendis J— P

Raphael et al. Genome Medicine 2014, 6:5



How data looks like?

Variant Calling File (VCF) with germline and somatic variants

##fileformat=VCFv4.1

##tcgaversion=1.1

##reference=<ID=hgl9, source=.>

##phasing=none

##geneAnno=none

##INFO=<ID=VT,Number=1,Type=String,Description="Variant type, can be SNP, INS or DEL">

##INFO=<ID=VLS,Number=1, Type=Integer,Description="Final validation status relative to non-adjacent Normal, ...... ">
##FILTER=<ID=CA,Description="Fail Carnac (Tumor and normal coverage, tumor variant count, mapping quality, ......">
##FORMAT=<ID=GT,Number=1, Type=String,Description="Genotype">

##FORMAT=<ID=DP,Number=1, Type=Integer,Description="Read depth at this position in the sample">

##FORMAT=<ID=AD,Number=.,Type=Integer,Description="Depth of reads supporting alleles 0/1/2/3...">
##FORMAT=<ID=BQ,Number=.,Type=Integer,Description="Average base quality for reads supporting alleles">
##FORMAT=<ID=SS,Number=1, Type=Integer,Description="Variant status relative to non-adjacent Normal,O=wildtype, ...... ">

##FORMAT=<ID=SSC,Number=1, Type=Integer,Description="Somatic score between 0 and 255">
##FORMAT=<ID=MQ60,Number=1, Type=Integer,Description="Number of reads (mapping quality=60) supporting variant">

#CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NORMAL PRIMARY

1 10048 . C ccT . (0):\ VT=INS;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:66:.,0:.:0:.:0 0/1:32:.,2:.:2:.:0

1 10078 . CT C . CcA VT=DEL; VL.S=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:25:.,0:.:0:.:0 0/1:13:.,2:.:2:.:0

1 10177 . A AC . CA VT=INS;VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:57:.,0:.:0:.:0 0/1:22:.,2:.:2:.:0

1 900505 5 G C 5 PASS VT=SNP; VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/1:188:.,89:26:1:.:81 0/1:210:.,113:24:1:.:100

1 1991007 . G T . PASS VT=SNP; VLS=5 GT:DP:AD:BQ:SS:SSC:MQ60 0/0:222:.,1:2:0:.:1 0/1:88:.,41:25:2:50:34




The TCGA data

The Cancer Genome Atlas Consortium

TCGA data (https://portal.gdc.cancer.gov/)
e 33 cancer projects (~11,300 cases)
e BAM files available

EABIZNBZQN;;':{:T"UTE [ Projects %% Exploration @ Analysis £ Repository

Harmonized Cancer Datasets
Genomic Data Commons Data Portal

Get Started by Exploring:

I Projects ¢ | Exploration @ Analysis S Repository

Q e.g. BRAF, Breast, TCGA-BLCA, TCGA-A5-A0G2

Data Portal Summary pataRelease 11.0 - May 21, 2018

PROJECTS PRIMARY SITES CASES

140 & 61 & 32.555

FILES GENES MUTATIONS

[11329,165 & 22,147 4 3,142,246

Q Quick Search

Manage Sets

%) Login

= Cart [}

i1 GDC Apps




The ICGC data portal

The International Cancer Genome Consortium

ICGC (https://dcc.icgc.org/)
® 20,487 cancer patients
® 84 cancer types in 22 primary sites for which sequencing data are available
e 77.4 million simple somatic mutations.

’ Cancer Projects Q Advanced Search € DCCData Releases & Data Repositories

Cancer genomics data sets visualization, Data Release 27  aoril 30th, 2015
analysis and download.
Cancer projects 84
Cancer primary sites 22
Search
Donor with molecular data in DCC 20,487
e.g. BRAF, KRAS G12D, DO35100, MU7870, FI998, apoptosis, Cancer Gene
Census, imatinib, GO:0016049 Total Donors 24,077
Simple somatic mutations 77,462,290

Advanced Search



Somatic Mutations

Number of somatic mutations per sample vary significantly across cancer types

Number of Somatic Mutations in Donor's Exomes Across Cancer Projects
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Driver vs Passenger

Number of recurrent mutations decrease exponentially.
On average a small fraction of variants a present in the majority of the samples.

Selecting mutations that are repeated at least twice we filter out ~98% mutations
and are still able to recover ~96% of the patients
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Tian R, Basu M, Capriotti E. BMC Genomics 2015
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The Cancer Tree

The analysis of recurrent somatic mutations can be used to define
similarities across cancer types.
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Recurrent variations

Recurrent mutations
Recurrent mutations that are found in Seq”e"cm:“e"t samples M“‘a“‘;” matrix
nas enas
more samples than would be expected by i+ g R w—
chance are good candidates for driver e e
L

mutations. i—)—— 3

:

s T—mm— |

To identify such recurrent mutations, a

- . : gl Single gene test
statistical test is performed which usually o genetes

- o + Recurrently
collap.ses E.l|| the non-synonymous ) Pasenge s E e
mutations in a gene. _ ) a “ vl
‘ Driver mutation Number of samples
Combinations of mutations
|dentification of recurrent mutations in e L Genes
predefined groups such as pathways and .. ps . .
protein-protein interaction networks and N e N g
de novo identification of combinations, - — » %8
. . . . L Known pathways Interaction natwork MNone
without relying on a priori definition.
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GSEA | NETBOX | MEMO ]
PATHSCAN OTNET DENDRIX

Raphael et al. Genome Medicine 2014, 6:5



The main idea

Genes implicated in cancer should have high mutation rate

In comparison to normal, tumor cells should have higher occurrence of functional
mutations in genes involved in the insurgence and progression of the disease.

Problem:

How can we select mutations with functional impact?

Average number of variants ~3,000,000
Average exome variants ~23,000
Average nonsynonymous single nucleotide variants ~10,000
Average rare (MAF<0.5%) nonsynonymous single nucleotide variants ~300

The 1000 Genomes Project (2010). Nature. 467; 1062-1073.



Variants and MAF

Rare variants are more likely to be associated to disease than high frequency variants
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<1% MAF =>1%

Tian R, Basu M, Capriotti E (2014). Bioinformatics. 30: i572-i578
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Rate Variants and Genes

On average tumor samples (COAD) have ~150 more rare missense variants and mutated genes
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Mutation rates

The analysis of 1000 Genomes, The Cancer Genome Atlas (TCGA)
normal and tumor samples shows an increasing number of genes with
rare nonsynonymous SNVs.

100

0 0 1000 Genomes []
Cohort P{;GR:rc‘)?:s P{OJGR‘:rc;?oSs TeoaTumor
1000 Genomes 95% 5% N
TCGA Normal 92% 8% e
TCGA Tumor 82% 18%

40—

% of Mutated Genes

Tumor = Colon Adenocarcinoma
PDR = Gene Putative Defective Rate
Fraction of samples in which a gene has >1

20

-

PDR=0.05 PDR>0.05

nonsynonymous variant with MAF<0.5% 0



ContrastRank score

The gene prioritization score is calculated using a binomial distribution.

N k N-k
bg(k,N,.ﬂI)= T (l—th)

KIN — k) °

kK: number of time a gene is observed to be a PIG
across all the samples

N: total number of samples

My: probability of success

frtrzlfhm=1- 21’ (BN,m)=1- E,v(zv-z)v”i(l—ﬂg)f”"'

with k>0

=-log,, P

S«S’ 8



Cancer Genome Analysis

New method for cancer gene prioritization based on the comparison of
the mutation rates in tumor samples vs normal and 1000 Genomes samples.

Gene PDR[T] | PDR|[B] Score
KRAS 0.436 0.009 72.6
TP53 0.441 0.011 63.7
PIK3CA 0.291 0.007 39.4
BRAF 0.146 0.001 29.9

Colon Adenocarcinoma

PDR[T] = Putative Defective Rate Tumor

PDR[B] = Putative Defective Rate Background
Background = Max (Normal and 1000 Genomes)

Tumor PDR

1.0 120
TP53
0.8 - KRAS 100
PIK3CA
80
0.6 -
60
0.4
40
0.2
20
0.0 0

Background PDR



Whole Exome Score

The prioritization score can be used to score the whole exome

The score associated to the whole sample is the average score over the
total number of putative impaired genes (M) in the sample

] - 1 <
S = M;S& =Mi=zl—loglo Pg,-

M: Total number of Putative Impaired Genes (PIGs) in the sample.



Scoring the risk of tumor

New method for discriminating normal from tumor samples scoring
the genome with the prioritization approach based on the background
PDR from normal and 1000 Genomes samples.

#Genes | Accuracy | Correlation AUC
4 0.92 0.84 0.92

Colon Adenocarcinoma
Tumor vs Normal samples
First 4 Genes: KRAS, TP53, PIK3CA, BRAF

Accuracy ——
Correlation a
AUC ---O---

1 4 10 100 1,000 10,000
Number of Genes



Discriminating tumor types

With three cancer types we tried to discriminate tumor type A from a
mixture of the remaining two (B +C).

The new prioritization score (sg) is the differences between the score of the
gene calculated on both subsets.

Sg = Sg* - SgBC

In this test we use the top ranking positively scored gene and lowest
ranking negative scored genes to classify a specific cancer type.



Tumor Profiling

Profiling tumor mutations comparing specific tumor samples against a
mixture of other tumor types.

#Genes | Accuracy | Correlation AUC
4 0.83 0.70 0.91

Colon vs Lung and Prostate Adenocarcinomas
2 High Positive Genes: KRAS, TP53
2 High Negative Genes: GAGE2A, CT45A6

Accuracy —@—
Correlation (m]
AUC ---Q---

1 4 10 100 1,000 10,000
Number of Genes



Another example

Prioritization of genes involved in lung adenocarcinoma

Gene PDR[T] | PDR|[B] Score
GAGE2A | 0.661 0.018 112.8

KRAS 0.286 0.008 46.3
CT45A6 | 0.0005 0.149 35.3

TP53 0.012 0.299 33.3

Lung Adenocarcinoma

PDR[T] = Putative Defective Rate Tumor

PDRI[B] = Putative Defective Rate Background
Background = Max (Normal and 1000 Genomes)

Tumor PDR

1.0

0.8-

0.6

GAGE2A

LUAD

0.0 0.2 0.4 0.6 0.8 1.0

Background PDR
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Tumor vs Normal

Scoring normal and tumor samples in lung adenocarcinoma.

#Genes | Accuracy | Correlation AUC
4 0.90 0.81 0.90

Lung Adenocarcinoma
Tumor vs Normal samples
First 4 Genes: GEGA2, KRAS, CT45A6, TP53

Accuracy —@—
Correlation (m]
AUC ---QO---

1 4 10 100 1,000 10,000
Number of Genes



Lung adenocarcinoma

Comparing lung adenocarcinoma against a mixture of other tumor types.

#Genes | Accuracy | Correlation AUC
4 0.66 0.34 0.67
100 0.73 0.49 0.78

Lung vs Colon and Prostate Adenocarcinomas

2 High Positive Genes: GAGE2A, CT45A6
2 High Negative Genes: SPOP, PIK3CA

Accuracy —@—
Correlation (m]
AUC ---O---

4 10 100 1,000 10,000
Number of Genes



Comparing tumor types

Lung adenocarcinoma is more heterogenous than colon and prostate.
Significantly high scored genes for lung adenocarcinoma are also important for
prostate and colon adenocarcinomas.

Lung (LUAD), Colon (COAD) and
Prostate (PRAD) Adenocarcinomas
Respectively 318, 139 and 96 with
score > 3

5 common genes are: TP53, BRAF,
NBEA, AR, RNF145.




Improving Prioritization

Considering all but synonymous variants the method assigning the top ranking score
to APC. When the raking procedure is performed the top genes are:

APC, TP53, KRAS, PIK3CA, BRAF.

Using PhD-SNP9 we predicted "0
the impact of the variants
0.8
e 66% of the all but synonymous 06
are predicted as Pathogenic g '
e 10% of the synonymous 3
variants are predicted as % 0.4-
Pathogenic
0.2
0.0 —— i !

All but Synonymous Synonymous



Exercise

Download the humsavar.ixt file from UniProt

» Parse the file and extract variants annotated as Disease and Polymorphism
» Test the discrimination power different substitution matrices (BLOSUM, PAM, etc.)

» Calculate the performance of the method at the optimized classification threshold.



