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From Sequence to Structure

Computational 
Approach

>TargetSequence 
MNPNQKIITIGSVCMTIGMANLILQIGNIISIWISHSIQLGNQNQIETCNQSV
ITYENNTWVNQTYVNISNTNFAAGQSVVSVKLAGNSSLCPVSGWAIYSKDNSV
RIGSKGDVFVIREPFISCSPLECRTFFLTQGALLNDKHSNGTIKDRSPYRTLM
SCPIGEVPSPYNSRFESVAWSASACHDGINWLTIGISGPDNGAVAVLKYNGII
TDTIKSWRNNILRTQESECACVNGSCFTVMTDGPSNGQASYKIFRIEKGKIVK
SVEMNAPNYHYEECSCYPDSSEITCVCRDNWHGSNRPWVSFNQNLEYQIGYIC
SGIFGDNPRPNDKTGSCGPVSSNGANGVKGFSFKYGNGVWIGRTKSISSRNGF
EMIWDPNGWTGTDNNFSIKQDIVGINEWSGYSGSFVQHPELTGLDCIRPCFWV
ELIRGRPKENTIWTSGSSISFCGVNSDTVGWSWPDGAELPFTID

Tertiary Predictions:

1. Comparative/Homology Modeling
2. Fold Recognition
3. De Novo Protein Structure Prediction



Template search
àComparative/Homology modelling requires:

1) the availability of a template
2) high sequence identity between target and template

àMultiple sequence alignment and HMM are able to extend the 
applicability domain of comparative modelling (remote 
homology)

àExample from the practicum: starting from the seed you 
adopted for modelling the Kunitz domain, how many 
similar domain can you recognize in SwissProt with 
simple sequence search? How many with your (or the 
PFAM) HMM?



A step further

àWhat if similarity methods (simple or profile-based) fail (i.e. no 
suitable template can be detected in the PDB) ?

àWhat are the possible scenarios?

1) Suitable templates DO NOT EXIST in the PDB
 à Ab Initio Methods are required 

2) There are possible templates in the PDB, but they CANNOT 
BE RECOGNIZED.
 à Fold recognition/Threading methods can be adopted



Ab Initio predictions

Difficult because search space is huge.  Much larger 
conformational space

Goal: Predict Structure only given its amino acid sequence
In theory: Lowest Energy Conformation

Difficult for sequences larger that 150aa

Rosetta (David Baker lab) one of best (CASP evaluation)



MD Force Field 
The Potential Energy Function

Ubond = oscillations about the equilibrium bond length

Uangle = oscillations of 3 atoms about an equilibrium bond angle

Udihedral = torsional rotation of 4 atoms about a central bond

Unonbond = non-bonded energy terms (electrostatics and Lenard-Jones)

https://www.charmmtutorial.org 

One of the most popular forcefield is CHARMM 
(Chemistry at HARvard Macromolecular Mechanics)

Classical Molecular Dynamics

m(t)t /)( Fa =

ttttt !! )()()( avv +=+

ttttt !! )()()( vrr +=+

)(r
r

F U
d

d
!=

https://www.charmmtutorial.org
https://www.charmmtutorial.org


MD Limitations
• Requires powerful hardware or computing time
• Limited to small simple proteins
• Can not take in to account chaperone activity
• Criteria for success??

How Fast-Folding Proteins Fold
Kresten Lindorff-Larsen,1*† Stefano Piana,1*† Ron O. Dror,1 David E. Shaw1,2†

An outstanding challenge in the field of molecular biology has been to understand the process
by which proteins fold into their characteristic three-dimensional structures. Here, we report the
results of atomic-level molecular dynamics simulations, over periods ranging between 100 ms
and 1 ms, that reveal a set of common principles underlying the folding of 12 structurally diverse
proteins. In simulations conducted with a single physics-based energy function, the proteins,
representing all three major structural classes, spontaneously and repeatedly fold to their
experimentally determined native structures. Early in the folding process, the protein backbone
adopts a nativelike topology while certain secondary structure elements and a small number of
nonlocal contacts form. In most cases, folding follows a single dominant route in which elements
of the native structure appear in an order highly correlated with their propensity to form in the
unfolded state.

Protein folding is a process of molecular
self-assembly during which a disordered
polypeptide chain collapses to form a com-

pact and well-defined three-dimensional struc-
ture. Hundreds of studies have been devoted to
understanding the mechanisms underlying this
process, but experimentally characterizing the
full folding pathway for even a single protein—
let alone for many proteins differing in size,
topology, and stability—has proven extremely
difficult. Similarly, simulating the folding of a
small protein at an atomic level of detail is a
daunting task. Both experimental and compu-
tational studies have thus generally focused on
one protein at a time, with such studies each
performed under different conditions or with
different techniques. Possibly because of the
resulting heterogeneity of the available data,
numerous theories have been proposed to de-
scribe protein folding and no consensus has
been reached on which of these theories, if any,
is correct (1).

Our research group has developed a special-
ized supercomputer, called Anton, which greatly
accelerates the execution of atomistic molecular
dynamics (MD) simulations (2, 3). In addition,
we recently modified the CHARMM force field
in an effort to make it more easily transferable
among different protein classes (4). Here, we have
combined these advances to study the folding
process of fast-folding proteins through equilib-
rium MD simulations (2). We studied 12 protein
domains (5) that range in size from 10 to 80 amino
acid residues, contain no disulfide bonds or pros-
thetic groups, and include members of all three
major structural classes (a-helical, b sheet and
mixed a/b). Of these 12 protein domains, 9 repre-
sent the nine folds considered in a review of fast-
folding proteins (6). Asmost of these nine proteins
contain only a helices, we also included two ad-

ditional a/b proteins and a stable b hairpin to
increase the structural diversity of the set of pro-
teins examined.

In our simulations, all of which used a single
force field (4) and included explicitly represented
solvent molecules, 11 of the 12 proteins folded
spontaneously to structures matching their exper-
imentally determined native structures to atomic

resolution (Fig. 1). The native state of the 12th
protein, the Engrailed homeodomain, proved
unstable in simulation. We were, however, able
to fold a different homeodomain (7) with the
same overall structure; the results reported below
pertain to this variant, rather than the Engrailed
homeodomain.

For all 12 proteins that folded in simulation,
we were also able to perform simulations near
the melting temperature, at which both folding
and unfolding could be observed repeatedly in
a single, long equilibrium MD simulation. For
each of the 12 proteins, we performed between
one and four simulations, each between 100 ms
and 1 ms long, and observed a total of at least
10 folding and 10 unfolding events. In total, we
collected ~8 ms of simulation, containing more
than 400 folding or unfolding events. For 8 of
the 12 proteins, the most representative structure
of the folded state fell within 2 Å root mean
square deviation (RMSD) of the experimental
structure (Fig. 1). This is particularly notable
given that the RMSD calculations included the
flexible tail residues and that, in some cases,
there was no experimental structure available

1D. E. Shaw Research, New York, NY 10036, USA. 2Center
for Computational Biology and Bioinformatics, Columbia
University, New York, NY 10032, USA.

*These authors contributed equally to the manuscript.
†To whom correspondence should be addressed. E-mail:
david.shaw@DEShawResearch.com (D.E.S.); kresten.lindorff-
larsen@DEShawResearch.com (K.L.-L.); stefano.piana-
agostinetti@DEShawResearch.com (S.P.)

Fig. 1. Representative structures of the folded state observed in reversible folding simulations of 12
proteins. For each protein, we show the folded structure obtained from simulation (blue) superimposed on
the experimentally determined structure (red), along with the total simulation time, the PDB entry of the
experimental structure, the Ca-RMSD (over all residues) between the two structures, and the folding time
(obtained as the average lifetime in the unfolded state observed in the simulations). Each protein is
labeled with a commonly used name, although in several cases, we studied mutants of the parent se-
quence [amino acid sequences of the 12 proteins and simulation details are presented in (5)]. PDB entries
in italics indicate that the structure has not been determined for the simulated sequence and that, instead,
we compare it with the structure of the closest homolog in the PDB. The calculated structure was obtained
by clustering the simulations (26) to avoid bias toward the experimentally determined structure.

www.sciencemag.org SCIENCE VOL 334 28 OCTOBER 2011 517
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Lindorff-Larsen et al. Science 2011.



Fragment-based predictions
Rosetta is one of the most accurate fragment-based prediction methods. 



Fold Recognition

• Proteins that do not have similar sequences sometimes have similar three-
dimensional structures (such as B-barrel TIM fold)

• A sequence whose structure is not known is fitted directly (or “threaded”) 
onto a known  structure and the “goodness of fit” is evaluated using a 
discriminatory function

3.6 Å
5% ID

NK-lysin (1nkl) Bacteriocin T102/as48 (1e68)



Threading & Fold Recognition
Generalization of comparative modeling method

• Homology Modeling: Align sequence to sequence

• Threading: Align sequence to structure (templates)
For each alignment, the probability that that each amino 
acid residue would occur in such an environment is 
calculated based on observed preferences in determined 
structures.

Rationale:
• Limited number of basic folds found in nature
• Amino acid preferences for different structural 
environments provides sufficient information to choose the 
best-fitting protein fold (structure)



Fold Recognition approach
Even if the sequence loses any detectable similarity, secondary 
structure (and other features such as solvent accessibility profile, 
disulfide bonds…) should be more conserved



Threading
Does the sequence “fit” on any of a library of known 3D structures?

>C562_RHOSH
TQEPGYTRLQITLHWAIAGL…

Orengo et al. Structure 1997



Mapping Problem (I)
  Covalent structure 
  
 TTCCPSIVARSNFNVCRLPGTPEAICATYTGCIIIPGATCPGDYAN

Ct

Nt

3D structure

Secondary structure 
  

 EEEE..HHHHHHHHHHHH....HHHHHHHH.EEEE...........



Mapping Problem (II)
Topography: position of Trans Membrane Segments along the sequence

Porin  
(Rhodobacter capsulatus)

Bacteriorhodopsin 
(Halobacterium salinarum)

B
ila
ye
r

β-barrel α-helices
Outer Membrane Inner Membrane

ALALMLCMLTYRHKELKLKLKK ALALMLCMLTYRHKELKLKLKK ALALMLCMLTYRHKELKLKLKK



A simple approach
Propensity scales

For each residue 

•The association between each residue and the different 
features is statistically evaluated

•Physical and chemical features of residues

A propensity value for any structure can be associated to any 
residue

HOW?



Chou-Fasman (I)
Given a set of known structures we can count how many times 
a residue is associated to a structure.

Example: 

ALAKSLAKPSDTLAKSDFREKWEWLKLLKALACCKLSAAL
hhhhhhhhccccccccccccchhhhhhhhhhhhhhhhhhh

N(A,h) = 7, N(A,c) =1, N= 40

P(A,h) = 7/40, P(A,c) = 1/40

Is that enough for estimating a propensity?



Chou-Fasman (II)
We need to estimate how much independent the residue-to-
structure association is. 

P(h) = 27/40, P(c) = 13/40, P(A) = 8/40

If the structure is independent of the residue:
P(A,h) = P(A)P(h)

The ratio P(A,h)/P(A)P(h) is the propensity



The prediction method
The Chou-Fasman method was published in 1974 and the propensity 
scales were calculated on a set of 19 proteins. 

Chou and Fasman Biochemistry 1974



Updated Chou-Fasman
An update version of the Chou-Fasman propensity scales are available 
at the AAIndex database.

http://www.genome.jp/aaindex/ 

http://www.genome.jp/aaindex/
http://www.genome.jp/aaindex/


Given a new sequence a secondary structure prediction can be 
obtained by plotting the propensity values for each structure, residue by 
residue

Considering three secondary structures (H,E,C), the overall accuracy, as 
evaluated on an uncorrelated set of sequences with known structure, is 
very low
Accuracy = 50/60 %

Secondary Structure

  

T S P T A E L M R S T G
P(H) 69 77 57 69 142 151 121 145 98 77 69 57
P(E) 147 75 55 147 83 37 130 105 93 75 147 75

Y Y Y

http://www.genome.jp/aaindex/
http://www.genome.jp/aaindex/


Chou-Fasman Algorithm
Conformational parameter: Pα ,Pβ and Pt for each amino acid i

Pi,x = f i,x / < f x > = (n i,x / n i )/ (n x / N)

Nucleation sites and extension
   Clusters of four helical formers out of six propagated by four residues

   4
    if < Pα > = ∑ Pα / 4 ≥ 1.00

   1
   Clusters of three β-formers out of five propagated by four residues

  4
    if < Pβ > = ∑ Pβ / 4 ≥ 1.00

  1
   Clusters of four turn residues

   if Pt = f j ☓  f j+1 ☓  f j+2☓ f j+3 > 0.75 ☓ 10 –4

   
Specifics thresholds for < Pα > , < Pβ > and < Pt > and their relatives values decide 
for the prediction



Kyte-Doolittle scale
It is computed taking into consideration the octanol-water 
partition coefficient, combined with the propensity of the 
residues to be found in known transmembrane helices



Exercise

Develop your own alpha helix propensity scale based on the 
non redundant PDB structures with resolution below 2 Å and 
with more than 50 residues.

Compare your scale with the AAindex Chou-Fassman scale

Write a script that given a sequence and propensity scale 
calculates the smoothed score on a window sequence. 



Second generation methods

The structure of a residue in a protein strongly depends on the sequence 
context

It is possible to estimate the influence of a residue in determining the 
structure of a residue close along the sequence. Usually windows from -8/8 
to -13/13 are considered.

Coefficients P(A,s,i) estimate the contribution of the residue A in determining 
the structure s for a residue that is i positions apart along the sequence



• Garnier, Osguthorpe & Robson

• Assumes amino acids up to 8 residues on each side influence the 
ss of the central residue.

• Frequency of amino acids at the central position in the window, and 
at -1, .... -8 and +1,....+8 is determined for a, b and turns (later 
other or coils) to give three 17 x 20 scoring matrices.

• Calculate the score that the central residue is one type of ss and 
not another.

• Correctly predicts ~64%.

GOR method



Scoring Matrix

… - 4 -3 -2 -1 0 1 2 3 4 …

A .. .. .. .. .. .. .. .. .. ..

B .. .. .. .. .. .. .. .. .. ..

.      A    Y    E     D    Y    R    H     F     S      .

( | )
log , 8, ,8

( )
i i jij

ss
i

P ss aa
S j

p ss
+= = − …



Information Function

Information function, I(Sj;Rj) :

( | )
( ; ) log

( )
j j

j j
j

P S R
I S R

p S
=

• Information that sequence Rj contains about structure Sj

• I = 0 : no information
• I > 0 : Rj favors Sj

• I < 0 : Rj dislikes Sj

  =  one of three secondary structure (H, E,C) at position jS j
  =  one of the 20 amino acids at position jR j

( | )  =  conditional probability for observing  having j j j jp S R S R
( )  =  prior probability of having j jp S S



GOR approximation

8 8( ; ) ( ; , , , , )j i j j jI S I S R R R− += ≈R … …

8

8 8
8

( ; , , , , ) ( ; )i j j j j j m
m

I S R R R I S R− + +
=−
∑… … !

• Secondary structure should depend on the whole sequence, R
• Simplification (1) : only local sequences (window size = 17) are 

considered

• Simplification (2) : each residue position is statistically 
independent.

• For independent event, just add up the information



GOR Scores

8 8( ; ) ( ; , , , , )j i j j jI S I S R R R− += ≈R … …

8

8 8
8

( ; , , , , ) ( ; )i j j j j j m
m

I S R R R I S R− + +
=−
∑… … !

TABLE 1 

Directional information measure for the a-helical wnformationf 

Ammo aoid Residue positionS 

residue (oentinats) 
j-s j-6 j - 4 j-2 j i+2 j-l-4 j+6 j+s 

GUY -6 
5 

Val 0 
Leu 0 
Ile 6 
SW 0 
Thr 0 
ASP 0 
Glu 0 
As-n 0 
Gin 0 
LYS 20 
His 10 
h3 0 
Phe 0 
TF -6 

2 -10 0 
Met 10 
Pro -10 

-10 -16 -20 -30 -40 -60 -60 -86 
10 lb 20 30 40 50 60 66 

0 0 0 0 0 6 10 14 
6 10 15 20 26 28 30 32 

10 lb 20 26 20 lb 10 6 
-6 -10 -16 -20 -26 -30 -36 -39 

0 0 -6 -10 -16 -20 -26 -26 
-6 -10 -16 -20 -16 -10 0 5 

0 0 0 10 20 60 70 78 
0 0 0 -10 -20 -30 -40 -61 
0 0 0 6 10 20 20 10 

40 60 66 60 60 50 30 23 
20 30 40 50 60 60 30 12 

0 0 0 0 0 0 0 -9 
0 0 0 0 6 10 lb 16 

-10 -16 -20 -26 -30 -36 -40 -45 
-20 -40 -50 -60 -10 0 10 12 

0 0 0 0 0 -6 -10 -13 
20 26 30 36 40 46 60 53 

-20 -40 -60 -80 -100 -120 - 140 -77 

-60 -60 -40 -30 -20 -15 
60 50 40 30 20 lb 
10 6 0 0 0 0 
30 28 26 20 lb 10 

0 -10 -16 -20 -25 -20 
-36 -30 -26 -20 -lb -10 
-26 -20 -16 -10 -5 0 

10 lb 20 20 20 15 
78 78 78 78 70 60 

-40 -30 -20 -10 0 0 
-10 -20 -20 -10 -5 0 

10 6 0 0 0 0 
-20 -10 0 0 0 0 
-16 -20 -30 -40 -50 -60 

16 10 6 0 0 0 
-40 -36 -30 -26 -20 -lb 

10 0 -10 -50 -60 -40 
- 10 -6 0 0 0 0 

60 46 40 35 30 25 
-60 -30 -20 -10 0 0 

-10 
10 

cl 
5 

-10 
-6 

0 
10 
40 

0 
0 
0 
0 

-30 
0 

-10 
-20 

0 
20 

0 

-5 
5 
0 
0 

-6 
0 
0 
5 

20 
0 
0 
0 
0 

-10 
0 

-6 
-10 

0 
10 

0 

t The data for Tables 1 to 4 are obtained from 26 proteins by Robson & Suzuki (1976), but the values quoted here are read from curves fitted through 
the directional plots. The coil values come from the same source but have not previously been quoted. Values are in centinats (nats x 100). 

$ For example, the information at position j - 6 is the information which the residue j carries about the conformation of any residue 6 away in the N- 
terminal direction and at positionj + 6 about any residue 6 away in the C-terminal direction (see Robson BE Suzuki, 1976). At position j, it is the informa- 
tion carried by the residue itself to be in t.he given conformation (single-residue information). 



GOR performance

Information scores obtained on a set of 25 proteins.

Accuracy = 60-65 % (Considering three secondary structures (H,E,C), 
and evaluating the overall accuracy on an uncorrelated set of 
sequences with known structure)

The contribution of each position in the window is independent of the 
other ones. No correlation among the positions in the window is taken 
in to account.

Garnier et al. J Mol Biol. 1978.


