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ABSTRACT

Motivation: Automating the assignment of existing domain and pro-

tein family classifications to new sets of sequences is an important

task. Current methods often miss assignments because remote rela-

tionships fail to achieve statistical significance. Some assignments are

not as long as the actual domain definitions because local alignment

methods often cut alignments short. Long insertions in query se-

quences often erroneously result in two copies of the domain assigned

to the query. Divergent repeat sequences in proteins are often missed.

Results: We have developed a multilevel procedure to produce nearly

complete assignments of protein families of an existing classification

system to a large set of sequences. We apply this to the task of as-

signing Pfam domains to sequences and structures in the Protein Data

Bank (PDB). We found that HHsearch alignments frequently scored

more remotely related Pfams in Pfam clans higher than closely related

Pfams, thus, leading to erroneous assignment at the Pfam family level.

A greedy algorithm allowing for partial overlaps was, thus, applied first

to sequence/HMM alignments, then HMM–HMM alignments and then

structure alignments, taking care to join partial alignments split by

large insertions into single-domain assignments. Additional assign-

ment of repeat Pfams with weaker E-values was allowed after stronger

assignments of the repeat HMM. Our database of assignments, pre-

sented in a database called PDBfam, contains Pfams for 99.4% of

chains450 residues.

Availability: The Pfam assignment data in PDBfam are available at

http://dunbrack2.fccc.edu/ProtCid/PDBfam, which can be searched

by PDB codes and Pfam identifiers. They will be updated regularly.
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1 INTRODUCTION

Clustering proteins of known structures into families or super-

families is a long-standing task of particular importance in
understanding structure–function relationships and for protein

structure prediction by homology. Usually, protein classification

in the PDB is accomplished at the level of domains—substruc-

tures that recur as functional units in different protein contexts.
Structure-based domain classifications of the PDB, such as

SCOP (Murzin et al., 1995) and CATH (Orengo et al., 1997),

are constructed by comparing the available protein structures in

the PDB and creating classifications of new folds and

superfamilies manually. Existing structure-based classifications

cover only a portion of the PDB. The most recent SCOP release

(v. 1.75A) is 2 years behind the PDB and only covers 61% of

current PDB entries. CATH was last updated in November 2011

and covers 64% of the current PDB.

Sequence-based approaches, such as Pfam (Sonnhammer

et al., 1997), ProDom (Servant et al., 2002), InterPro (Hunter

et al., 2009), SMART (Schultz et al., 1998) and SUPfam (Pandit

et al., 2002), can be readily applied to new structures because

most new structures fit into existing sequence clusters. In this

way, they are well suited for rapid and automated classification

of new structures in a way that structure-based classifications are

not. Some differences between sequence-based and structure-

based classifications occur when a single sequence domain is

structurally two or more domains with separate hydrophobic

cores or a single structural domain is two sequence domains

(Zhang et al., 2005). Structure-based methods are often superior

in recognizing remote relationships between families, as these

relationships may be apparent only from structural similarity

and in the absence of any recognizable sequence similarity.

Even with structural information, it may be difficult to distin-

guish between divergent and convergent evolutionary relation-

ships (Tress et al., 2005).

Our aims in this article are two fold: first, to develop a general

procedure that can be used to make rigorous assignments of

existing protein family classification systems for any set of pro-

tein sequences, and second, to perform this task for the entire

PDB. For the PDB, we wish to define a method that can be run

automatically on a weekly or monthly basis. We have thus

chosen the sequence-based domain classification given by

Pfam, as new proteins in the PDB can be readily assigned to

existing Pfams, without manual intervention required by

structure-based classification systems.
Pfam is a database of protein families, in which each family is

represented by a hidden Markov model (HMM) created from

manually curated multiple sequence alignments (Sonnhammer

et al., 1997). The Pfam classification of protein families has

gained widespread acceptance among biologists because of its

wide coverage of proteins and a sensible naming convention

related to protein functions and commonly used names

(Pkinase, SH2, etc.). Pfam was recently used in the Protein

Structure Initiative to select targets and divide them among dif-

ferent high-throughput centres (Dessailly et al., 2009). Some

Pfam families are seeded by structures in the PDB (Finn et al.,

2010). Two or more related Pfam families are grouped into a

Pfam clan (Finn et al., 2006). Such relationships are often*To whom correspondence should be addressed.
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identified through structural similarity, as they are in the struc-

tural classification systems.

Several assignments of Pfam domains to the PDB are currently

available, including Pfam itself (Punta et al., 2012), SIFTS

(Velankar et al., 2005) and the RCSB (Research Collaboratory

for Structural Bioinformatics), covering 45, 87 and 94% of

unique sequences in the PDB, respectively. Each of the currently

available sources of Pfam assignments to the PDB suffer from

one or more of a number of problems. First, because they use

only the original PDB or UniProt sequences against the Pfam

HMMs, they miss many potential assignments that occur when

the sequence is not closely related to any single Pfam family. It is

likely that sequence methods based on profile–profile compari-

son may identify these relationships and provide higher levels of

statistical significance. Second, in some cases, these sources also

provide completely overlapping assignments, sometimes when

two different Pfams in the same clan align to the same region

of a PDB sequence with good E-values. If we want to cluster at

the family level and then the superfamily level, this produces

discrepancies. Third, some proteins have long insertions relative

to the Pfam HMM definition, and HMMER may produce two

alignment segments, one on either side of the insertion. These

two segments cover non-overlapping regions of the HMM, and

together should comprise a single Pfam assignment. However,

the publicly available sources simply list these separately, and

they cannot easily be distinguished from repeated domains in

the same protein. Fourth, some protein structures are composed

of two chains that together comprise a single Pfam domain, i.e.

two non-overlapping regions of the same Pfam HMM. Pfam,

SIFTS and the RCSB do not properly account for domains

split by insertions or split between different chains.
We overcome some of the deficiencies of other Pfam databases

using several strategies. The first is to use consensus sequences

derived from PSI-BLAST profiles and to run these through the

Pfam HMM library. Such sequences can be fed to the Pfam

HMMs like any protein sequence, and they usually produce

more complete alignments with better E-values than the original

sequences. Similar techniques have been used by us previously

(Kahsay et al., 2005) and by others (Przybylski and Rost, 2008).

Secondly, we utilize HHblits (Remmert et al., 2012) to produce

HMMs for PDB sequences and their parent UniProt sequences,

and then apply HMM–HMM alignment of these HMMs against

the Pfam HMMs using HHsearch (Söding, 2005). The third ap-

proach is to utilize structure alignment of statistically confident

and complete structures in Pfam families with weak hits in the

same Pfam families—either those with poor E-values and/or

alignments that cover only a portion of the Pfam HMM. This

allows us to verify whether a weak assignment is correct and to

extend short alignments.
Finally, we have developed a procedure for optimally combin-

ing assignments from these multiple sources into Pfam architec-

tures for each protein in the PDB. The procedure combines

non-overlapping or minimally overlapping partial assignments

to the same Pfam into single assignments, thus, accounting for

large insertions or domains split across multiple protein chains.

We assign additional repeat domains at weaker E-values if the

same repeat family is assigned earlier in the procedure at an

E-value better than the general cut-off.

We explore the properties of the regions and proteins that

cannot be assigned to a Pfam domain and the interactions be-

tween Pfam domains in the biological assemblies of structures in

the PDB, according to our Pfam assignments. Regions not as-

signed to Pfams have a greater tendency to be disordered in

protein structures and to have lower rates of regular secondary

structure than regions assigned to Pfam domains. The number of

Pfam–Pfam interactions is increased by the number of assign-

ments made using the methods described here but are also crit-

ically dependent on the usage of biological assemblies from

crystal structures rather than the asymmetric units.
The Pfam assignments can be searched through the ProtCID

server (http://dunbrack2.fccc.edu/protcid) by PDB codes,

Pfam codes and sequences. Downloadable files of the Pfam as-

signments and those proteins that cannot be assigned are also

available on the website http://dunbrack2.fccc.edu/ProtCID/

PDBfam.

Our procedure is general and can be applied to other domain

classification systems and other target sequence sets. Even if the

target sequence set is not the PDB, structural information may

still be used for proteins in the sequence set that can be readily

aligned with proteins of known structure.

2 METHODS

2.1 Searching Pfam through PSI-BLAST consensus

sequences and HHsearch

Pfam v26 files Pfam-A.hmm and Pfam-B.hmm were downloaded from

the Pfam website and were used as HMMER3 profile databases (Finn

et al., 2010). The PDB sequences (Berman et al., 2000) were parsed from

pdbx_seq_one_letter_code records in the PDB XML files (Westbrook

et al., 2005). UniProt sequences were downloaded from the UniProt web-

site (Bairoch et al., 2005). The XML files from the SIFTS database

(Velankar et al., 2005) were used to find the residue correspondence be-

tween the UniProt and PDB sequences.

For each unique PDB sequence, we used one iteration of our modified

PSI-BLAST (Altschul et al., 1997) from MolIDE (Wang et al., 2008) to

generate a profile from sequences in the UniRef90 database (Li et al.,

2000). The parameters for PSI-BLAST were ‘-e 10 -h 0.0001 -v 5000 -b

5000 -N 25 -f 16’. A PSI-BLAST profile is a position-specific scoring

matrix (PSSM), which provides a log-odds score and percentage of oc-

currences for each of the 20 amino acid types at each position in the query

sequence. A consensus sequence is a 1D simplification of a PSI-BLAST

profile obtained by substituting the 20-dimensional vector in each residue

position by the highest scoring or most common amino acid observed at

that position. In this article, a ‘percentage consensus sequence’ is com-

posed of the most frequent residues in each column, whereas a ‘PSSM

consensus sequence’ is composed of the highest scoring amino acid at

each position. We also applied the same procedure to the full UniProt

sequences from which PDB sequences are derived, as identified by SIFTS.

We, thus, have the following six sets of sequences: PDB sequences,

PDB percentage consensus sequences, PDB PSSM consensus sequences,

UniProt sequences, UniProt percentage consensus sequences and

UniProt PSSM consensus sequences. In this article, we denote those se-

quences as PDB, PDB-percent, PDB-pssm, UNP, UNP-percent and

UNP-pssm, respectively. We ran HMMER3 on all six sets of sequences

against Pfam A and Pfam B HMM models. We refer to these six sets of

alignments as ‘HMMER hits’.

We ran HHblits on unique sequences in the PDB and UniProt

sequences to generate HMMs on database uniprot20_29Mar11, which

is a database of HMMs created from a clustering of UniProt sequences
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at 20% identity (Remmert et al., 2012). We searched the Pfam HMMs

with the HHblits-derived PDB and UniProt HMMs with HHsearch

(Söding, 2005) to generate Pfam to PDB alignments through HMM–

HMM alignments. We refer to these as ‘HH hits’.

2.2 Pfam E-value and FATCAT P-value cut-offs

To determine the cut-off of HMMER E-values and structure alignment

P-values for each Pfam A present in the six sets of alignments, we col-

lected those Pfam hits with HMMER E-value of510�5, HMM coverage

40.9, and then selected the alignment with the largest number of match

states assigned to residues with Cartesian coordinates in the PDB struc-

tures as the representative hit. A total of 5134 Pfams were selected. With

HMMER3, we aligned each PDB sequence of these representative hits to

all of the 5134 Pfam HMMs. The resulting data points were divided into

the following two classes: same clan and different clan, depending on

whether the two Pfams were in the same or different clans according to

the clan definitions in the Pfam v26 MySQL database.

Smoothed density function curves were calculated using kernel density

estimates (Sheather and Jones, 1991) in the R project (http://www.r-

project.org/) by calculating probability density estimates of same clan

and different-clan prediction as a function of log10(E-value):

f Að Þ ¼
1

N

XN
i¼1

Kh A� Aið Þ

where Ai is log10(E-value), and Kh is a Gaussian kernel with bandwidth h:

Kh xð Þ ¼
1ffiffiffiffiffiffiffiffi
2�h
p exp

�x2

2h2

� �

The probability at A is calculated using Bayes’ rule:

P samejAð Þ ¼
P Ajsameð ÞP sameð Þ

P Ajsameð ÞP sameð Þ þ P Ajdiffð ÞP diffð Þ

where P(Ajsame) and P(Ajdiff) are calculated from f(A) using the same

clan and different-clan sets of E-values, respectively. P(same) and P(diff)

are the percentages of data points from the same-clan class and the

different-clan class. From a value of A such that P(samejA)495%, we

selected a threshold for the Pfam E-values of 10�5 (see ‘Results’ section).

To select a Pfam E-value threshold for HH hits, we applied the same

procedure on the HH alignments, which contains 5387 Pfam hits.

The threshold of HHsearch E-value for P(samejA)495% is 10�4 (see

‘Results’ section).

We performed structure alignment with the FATCAT program (Ye

and Godzik, 2003) of each structure with every other structure in the 5134

Pfam set. The data points consisting of log10(P-values) were defined as

either same clan or different clan. Kernel density estimates and Bayes’

rule were used to obtain P(samejA) where A is the log10(P-value) from

FATCAT. From the value of A such that P(samejA)495%, we selected a

threshold for the FATCAT P-values of 10�3 (see ‘Results’ section).

2.3 General greedy algorithm

From any set of alignments of PDB sequences to Pfam HMMs, we use

the same general procedure based on a simple greedy algorithm to create

a unique assignment of a Pfam to each residue in a PDB sequence. Such

an assignment constitutes a Pfam ‘architecture’ or arrangement of do-

mains in the PDB sequence, allowing only for short overlaps.

For a given PDB sequence, we start by assigning the hit with the best

E-value. If there is any region in the query of430 amino acids that occurs

within the boundaries of the alignment to the best HMM but which is not

aligned to HMM match states, we create a ‘split assignment’. A split

assignment indicates that match states in the HMM align to separate

non-contiguous regions of the query sequence. The residues in the

inserted region of the query are then ‘unassigned’, which means they

are available for subsequent assignments. For each additional hit in

order by E-value (best to worst), we check whether it overlaps the current

Pfam assignments by410 residues on either end. If it does not, then an

assignment is made. Again, long insertions in the query result in split

assignments and the insertions are unassigned.

If at any time, the same Pfam model aligns more than once to a query

sequence, we check if the HMMmatch states align only once to the query

and in order allowing short overlaps of510 amino acids in the HMM. If

yes, then we combine them into one assignment to the HMM. The as-

signment is split if there are430 residues between the assigned regions,

and the intervening residues are left unassigned. If the assignments to the

Pfam cover the HMM match states more than once, then there is more

than one copy of the Pfam in the sequence (e.g. repeated domains), and

multiple assignments of the Pfam are made.

We also check whether the same Pfam aligned to different sequences

within the same PDB entry. In some cases, these hits do not overlap in the

HMM by410 amino acids, and they are then combined into a single

assignment.

In our procedure, we always used HMMER hits first, then HH hits.

2.4 Using structure alignments to improve Pfam

assignments

We use structure alignment to verify whether Pfam–PDB alignments with

weak E-values are correct and to extend short alignments to Pfam

HMMs. To do so, we need to identify structures (or domains within

structures) that cover Pfams in their entirety with good E-values.

We call such structures exemplars for their Pfams. Only a subset of

Pfams in the PDB has such high-quality alignments.

To identify exemplars, we first applied the greedy algorithm on all

Pfam alignments in the six sets of sequences and consensus sequences

with a conservative HMMER E-value of �10�5, obtaining split and

combined Pfam assignments. Some split assignments may be possible

where one component has significant E-value, whereas the other is

weaker. Therefore, we continue the greedy algorithm with alignments

with E-value of410�5 if the same Pfam has already been assigned to

the PDB sequence, up to an E-value of 1.0. We continued the greedy

algorithm with the HH hits with an E-value cut-off of 10�4. The reason

for applying the HMMER alignments before the HH alignments is dis-

cussed in the ‘Results’ section. For Pfams assigned in this procedure, we

identify an exemplar structure, defined as the structure with the largest

number of match states assigned to residues with Cartesian coordinates in

the PDB entry, with a coverage of the Pfam HMM of at least 80%.

HMM coverage is the number of the sequence residues with coordinates

aligned to a Pfam HMM match state divided by the length of the model.

In the event of a tie, the structure with the best E-value is used.

We divided the HMMER Pfam hits of all six sets into two

non-overlapping sets: {Strong Hits} and {Weak Hits}. Strong hits are

those hits with E-value of �10�5 and510 residues missing from the N

or C terminal end of the HMM, whereas weak hits comprise the remain-

ing alignments. For each hit in {Weak Hits}, we checked whether there

are exemplar structures for that Pfam and/or other Pfams in the same

clan. If there are, we perform structure alignments with the FATCAT

program (Ye and Godzik, 2003) on the region(s) of the weak hit structure

not previously aligned to the {Strong Hits}. We performed this procedure

separately for HH Pfam hits with E-value of �10�4.

If the FATCAT P-value is better than 10�3, we create an alignment of

the PDB query to the Pfam HMM through the exemplar structure

through a transitive alignment. For residue pairs AB and BC, (A to

B)þ (B to C)¼ (A to C). Here, A to B is the HMM to exemplar align-

ment, B to C is the structure alignment of the exemplar to the weak

assignment and A to C is HMM to the weak assignment. Once this

alignment is created, we move the alignment from {Weak Hits} to a

new set {Struct Hits}.
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2.5 The full algorithm for assigning Pfams to PDB

sequences

The full procedure of creating Pfam assignments to PDB sequences is as

follows. We have in hand six sets of alignments, {HMMER Strong Hits},

{HH Strong Hits}, {HMMER Struct Hits}, {HH Struct Hits},

{HMMER Weak Hits} and {HH Weak Hits}, the last two containing

those weak hits (too short and/or too weak an E-value) for which struc-

ture alignment was not possible or did not produce a significant align-

ment. We use the {HMMER Strong Hits} first in the greedy algorithm

until no more assignments can be made, and then continue with the

{HH Strong Hits}. Second, we continue the greedy algorithm with the

alignments in the {HMMER Struct Hits} and {HH Struct Hits} sets in

that order until no more assignments can be made. Third, we apply the

greedy algorithm to the remaining {HMMER Weak Hits} and

{HH Weak Hits} with E-value of �10�5 (HMMER) or �10�4 (HH).

These hits have strong statistical significance but410 residues missing

from the N or C terminal end of the HMM. Fourth, we proceed with the

remaining {HMMERWeak Hits} and {HHWeak Hits} up to a value of

1.0, but we only add these if the same Pfam has already been assigned in

one of the earlier steps. Some of these will be combined with earlier

assignments to produce split assignments. Some will be repeated domains.

Pfam B assignments are treated as weak hits and added only if the

E-value is better than the appropriate threshold.

3 RESULTS

3.1 Establishing E-value and P-value cut-offs

We investigated the HMMER3 E-value level at which Pfam as-

signments are likely to be reliable. We created a set of 5134

Pfams with E-values to unique PDB sequences �10�5 and

HMM coverage �90%. The associated PDB for each sequence

was the one with the largest number of match states assigned to

residues with Cartesian coordinates in the PDB entry. We

aligned the PDB sequences against the other 5133 Pfams in the

set with HMMER3 and classified the resulting alignments and

E-values depending on whether the PDB sequence and the Pfam

belonged to the same clan or different clans, according to Pfam

v. 26. The probability density functions and classification func-

tions versus log10(E-value) are shown in Figure 1a. The classifi-

cation function refers to how likely the Pfam of the query

sequence and the Pfam of the hit HMM belong to the same or

different clan as a function of log10(E-value). A hit has equal

probability of being in the same clan as a different clan when

the E-value is 0.01 (log10¼�2). When the E-value is 10�5, the

probability that a sequence belongs to the same clan is495%. In

this article, we define a Pfam assignment to be a strong assign-

ment when its E-value is �10�5.
The same analysis was performed for the HHsearch align-

ments, using a set of 5387 Pfams with E-value of �10�4.

Figure 1b shows the classification functions for the HH hits.

When HHsearch’s E-value of �10�4, the probability of being

in the same clan is495%.

FATCAT provides a P-value for the significance of the struc-

tural similarity between two proteins. We ran FATCAT on all

pairs of structures in the set of 5134 PDB structures used for the

evaluation of HMMER. The P-values were also divided into two

classes: same clan and different clan. The probability density and

classification functions are shown in Figure 1c. When the P-value

is50.001, the probability that two structures are in the same clan

is495%. FATCAT suggests a P-value cut-off of 0.05 for two

similar structures with 95% confidence interval. Our cut-off is

more restrictive because we are trying to identify not only similar

structural patterns but also probable homology. In this article,

we use the more strict P-value cut-off of 0.001.

3.2 Comparison of HMMER and HHsearch

To determine the relative utility of HMMER3 and HHsearch for

assigning Pfams to the PDB, we performed alignments of PDB

sequences and UniProt sequences against the Pfam HMMs using

both programs. We first calculated PSI-BLAST profiles using

one round of search on UniProt90 for all unique protein se-

quences in the PDB. From these profiles, we determined consen-

sus sequences using the most common amino acid in each

position (given in the PSI-BLAST profile output in percentage

terms) and the highest PSSM scoring amino acid. The means and

SDs of the sequence identities between PDB and PDB-percent

and PDB-pssm are 65.1� 10.0% and 63.3� 11.2%, respectively.

We ran HMMER3 with the original PDB and UniProt

sequences and their consensus sequences as queries against the

HMMs in Pfam-A. A probability density estimate of the

E-values from the original sequences demonstrated a maximum

in the density at an E-value of 10�20, whereas the consensus

sequences were shifted to a mode at 10�25. At a poor E-value

of 10�5, the original sequences have almost twice as many hits as

the consensus sequences, which have all been shifted to higher

statistical significance. A total of 38% of the consensus align-

ments were longer than the original-sequence alignments,

whereas only 10% were shorter. Most of the shorter assignments

occurred when the alignments of the consensus sequences are

broken down into two or more fragments, when the original

PDB sequence alignment was not. These fragments will be

joined in the application of the greedy algorithm.

We applied the greedy algorithm on the alignments to Pfam

from the original PDB and UniProt sequences alone and a set

combining these alignments with those from the consensus PDB

and Uniprot sequences. The set of assignments from the com-

bined consensus and original sequence alignments contains 371

more Pfam-As than the original PDB and UniProt sequences

and increases residue assignments by 4%.

It is often assumed that HMM–HMM alignments should be

better than sequence-HMM alignments; therefore, we compared

the Pfam assignments from the consensus sequences with

HMMER3 (described earlier in the text) and those from

HMM–HMM alignments produced by HHsearch using the gen-

eral greedy algorithm by HMMER3 given these E-value cut-offs.

HHsearch produced assignments to 2% more entries and 2%

more sequences than HMMER3. HHsearch did produce a

much larger number of weak hits, by 465% compared with

HMMER3. This indicates that HHsearch may be most useful

when HMMER3 fails to make any assignment. HHsearch pro-

duced 60% fewer assignments of repeats than HMMER3 did

(1881 versus 5006). HMMER and HHSearch assignments to

the PDB are compared in Table 1.

However, the most significant drawback of the HHsearch as-

signments was the tendency to assign more remotely related

Pfams in a Pfam clan compared with the HMMER3 assign-

ments. We compared Pfam assignments from HMMER3 and
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HHsearch with �80% overlap on the PDB sequence. A total of

120 517 (91.6%) of 131585 domain assignments were with the

same Pfam in the two sources, whereas 10 629 assignments

(8.1%) were to different Pfams within the same clan. Only 439

assignments (0.3%) belonged to different clans. Because

HHsearch is expected to find more remote hits than HMMER,

it seems likely that the HMMER assignment is correct, whereas

the HHsearch assigns a more remotely related Pfam. As we want

to make correct assignments at the Pfam level and the clan level,
we prefer the HMMER assignments over the HHsearch assign-

ments, when both are statistically significant.

3.3 Structure alignments

Both HMMER3 and HHsearch produce many alignments to

PDB sequences with weak E-values and/or alignments shorter
than the Pfam model definition. We investigated whether we

could confirm some of the weak hits and extend short alignments

by comparing structures. We define exemplars as structure/Pfam

pairs with good HMMER E-values (�10�5) or HH E-value

(�10�4) to the Pfam and HMM coverage of at least 80%. A

total of 81% of Pfams in the PDB have exemplars. The struc-

tures of weak Pfam hits were aligned to the exemplar structures

in the same clan, including the Pfam of the weak hit. A total of

7381 structure assignments were added to our Pfam assignments

by replacing the original alignment to the HMM by a transitive

alignment through the structure alignment. The number of PDB

residues aligned to Pfam HMMs for these sequences rises by

36%. An example is shown in Figure 2.
The ability of structure alignments to verify weak Pfam assign-

ments varies with the statistical significance of the Pfam align-

ment. At E-values better than 10�10, 480% of structure

alignments are statistically significant (P-values of 50.001);

these alignments are used solely to extend the Pfam domain as-

signments. At E-values of 40.01 and 510, about one-third of

assignments are confirmed by structure alignment.

3.4 Pfam architectures for the PDB

Several domain assignments through Pfam and other classifica-

tions are publicly available. In Table 2, these assignments are

compared with our Pfam assignments (‘PDBfam’) computed

with the full procedure described in the ‘Methods’ section. Our

method combines HMMER alignments to PDB and UniProt

sequences and their PSI-BLAST consensus sequences,

HHsearch alignments of HMMs of the PDB and UniProt se-

quences, FATCAT structure alignments for weak and/or short

hits and a greedy algorithm. We provide the number of entries

with at least one domain assignment by each method and the

number of unique sequences with assignments and residues

within unique sequences with assignments. In our Pfam assign-

ments, there are 6379 Pfam-As. Our PDBfam assignments cover

part or all of 98% of unique PDB sequences and 99.4% of all

unique sequences with length 450. Pfam itself provides a file,

pdbmap, which has domains listed for only 34188 PDB entries.

For these same 34188 entries, we have made 64832 domain as-

signments, whereas Pfam has only 38 927 assignments. We also

detected about three times as many repeats. The coverage of

PDB sequences from the other well-known data resources are

also given in Table 2. SIFTS covers 87% of PDB sequences by

mapping PDB sequences to UniProt sequences. As not all PDB

sequences in the PDB map to UniProt, SIFTS does not cover a

significant portion of the PDB. Pfam assignments from the

RCSB website contain a list of Pfam hits from HMMER3

Fig. 1. Probability density functions and classification functions of Pfam E-values by HMMER and HHsearch and FATCAT P-values. (a) Pfam

E-values from the exemplars and Pfam A v26 profile database by HMMER3. Only log10(E-value) from �10 to 5 are shown. (b) Pfam E-values by

HHsearch. Only log10(E-value) from �10 to 1 are shown. (c) FATCAT P-values. Only log10(P-value) from �5 to 0 are shown

Table 1. Pfam assignments from consensus sequences and profile HMMs

PDB–HMM Cons-HMM HMM–HMM

No. of Entries with

assignments

68 489 71051 72 781

No. of Entitiesa with

assignments

91 870 95772 97 885

No. of Domains 118 425 128462 128 645

No. of Residues 17494 555 18 620323 18 991 436

No. of Pfams 5744 6016 6134

No. of Repeat Pfams 52 75 71

No. of Repeats 3128 5006 1881

No. of Weak hits

(E-value of �10)

73 211 114027 189 664

aEntities are unique sequences in a PDB entry. So an asymmetric unit that is a

homooligomer of any size has a single protein entity sequence.

2767

Pfam and PDBfam



based on an E-value cut-off. Many of its assignments overlap

completely in the PDB sequence, usually because they are differ-

ent Pfams from the same clan.
To get a fair assessment of the RCSBs coverage, we used the

same criterion we applied to our data—no410 residues of over-

lap between Pfam assignments. The structure protein classifica-

tion systems CATH and SCOP have much lower coverages

because they are built manually and updated infrequently. Our

Pfam assignments to the PDB cover a larger percentage of

entries, unique sequences (entities) and residues than other avail-

able assignments. Perhaps more important than the number of

entries or sequences with at least one assignment is the number of

domain assignments made. Each assignment may lead to the

identification of new interactions of known structure available

in the PDB. The RCSB makes 68767 domain assignments after

removing overlapping assignments. In PDBfam, we have 79 201

domain assignments to unique sequences in the PDB, for an

increase of 15%.

3.5 Split Pfam architecture assignments

One feature of structures that we have accounted for in our Pfam

assignments is the presence of large insertions, relative to the

multiple sequence alignments that define the Pfam models.

Such insertions often result in separate alignments from

HMMER3 or HHsearch covering different parts of the PDB

sequence and different parts of the Pfam HMM. These are not

accounted for on the Pfam website, where they are often listed

as distinct architectures containing two copies of the Pfam

(e.g., ‘‘IMPDH� 2’’) rather than one that is split by an insertion.

In our current dataset, we have 5023 split domains (1.9% of the

total) of which 966 domains are multichain domains.

Our split assignments come in a number of forms because of

the ways that domains can be inserted or split up in the PDB

sequences. Table 3 displays the different formats of split domains

in our assignments, where X and Y are two Pfam IDs. The

format of the chain Pfam architecture for proteins with an

inserted domain is given on Line 1 as Domain1[Start-End]_

Domain2_Domain1[Start-End], where Domain1 is a split

domain and Start and End are positions within the HMM.

Line 2 shows the format when there is a long insertion that is

not assigned to a Pfam. Line 3 represents those structures where

two portions of the HMM are in reverse order in the PDB struc-
tures. Line 4 of the table denotes those structures where a Pfam is

split between two different chain sequences in the structure (e.g.
in this case, entity_id 2 and 3 in the PDB XML file).

3.6 Unassigned sequences and regions

There are 2043 unique sequences (from 4405 sequences including

redundancy) that can not be assigned to any Pfam by our pro-
cedure. A total of 945 of these unique sequences (46%) have

weak Pfam assignments—HMMER E-value of 410�5 or
HHsearch E-value of 410�4 and no structure alignment with

FATCAT P-value of510�3 up to E-values of 10. The remaining
1098 sequences (54%) are short peptides with length �21, of

which 263 sequences are part of UniProt sequences, but not
covered by Pfam strong hits. We investigated the properties of

the 18% of the �13 million residues in unique protein sequences
in the PDB that are not assigned to any Pfam by our method.

Figure 3 shows the histograms of the lengths of unassigned re-
gions [either N or C terminal regions (Fig. 3a) or internal regions

(Fig. 3b) and completely unassigned sequences (Fig. 3c)]. More
than 90% of unassigned regions/entities are short peptides with

length550. Figure 4 shows the secondary structures for the un-
assigned regions. The last bar in each figure is for proteins and

protein regions with Pfam assignments. The percentage of N and
C terminal unassigned regions that is disordered is more than

that for Pfam-assigned regions (10%). The secondary structures
of the internal unassigned residues are closer to that of Pfam

assignments but still have a higher proportion of coil and/or
disordered residues. For completely unassigned sequences, the

percentages of residues in coil or disordered are somewhat
higher for shorter sequences than for Pfam assignments, espe-

cially in the amount of disorder.

3.7 PFAM interactions

Pfam assignments have been used previously to catalogue the
physical interaction of different domain families within the

PDB (Finn et al., 2005; Stein et al., 2011). With a larger and
more accurate set of assignments, we have investigated the

number of such interactions that are now present in the PDB.

Fig. 2. Structure alignments verify and expand the Pfam assignments for the PDB entry 2EAB. Left: the initial Pfam assignments from the consensus

sequences. Right: the Pfam assignments to the exemplar 1H54. Middle: the Pfam assignments of 2EAB after structure alignment
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Less than 50% of the asymmetric units of crystal structures

correspond with the PDBs annotated ‘biological assemblies’

(Xu et al., 2006) that either come from the authors of each struc-

ture or are assigned using the PISA software (Krissinel and

Henrick, 2007). Although these biological assemblies are not

100% accurate (Xu et al., 2008), they provide a better dataset

to tally the number of Pfam interactions than the asymmetric

units. For example, an asymmetric unit for a structure may be a

monomer, whereas its biological assembly is a dimer. Such an

interaction would be missed if only the asymmetric unit is con-

sidered. The converse may also be true—an asymmetric unit may

consist of multiple chains, whereas the biological assembly is a

monomer. An incorrect interaction is counted in this case.
The numbers of interchain and intrachain interactions of

Pfams are given in Table 4. An interaction is defined if there

are at least five pairs of residues with any atomic distance55 Å

or at least 10 pairs of residues with Cb/Ca distance512 Å and at

least one atomic distance55 Å. The column ‘PDBfam (all BA)’

gives our results for the biological assemblies in the entire current

PDB.For instance, there are 3499Pfams involved in homodimeric

interactions between chains (or as heterodimers of two proteins

containing the same Pfam domains). There are 3958 pairs of

Pfams in physical interactions across two protein chains. If we

consider interchain and intrachain relationships together, there

are 3576 same-pfam interactions, and 6132 Pfam pair interactions

involving 3982 Pfams.
The 3DID database also uses Pfam to determine the preva-

lence of domain interactions in the PDB (Stein et al., 2011). We

parsed the 3DID Pfam interactions directly from the text file

(3did_flat_Apr_3_2011.dat) available from 3DID. This file

Table 2. The coverage of the PDB in various sources compared with PDBfam

Data Source No. of entries

Entriesa (%)

No. of unique

sequencesb (%)

No. of entries

Residuesc (%)

No. of

Pfamsd
No. of

repeats

PDB 80575 (100) 54437 (100) 13289 255 (100) — —

Pfam (PDBfam) 79 600 (99) 53494 (98) 10 930 394 (82) 6311 3828

Pfam (v.26) 34 188 (42) 24708 (45) 4 925 947 (37) 4874 1173

Pfam (SIFTS) 73 901 (92) 47293 (87) 9 458 200 (71) 5643 855

Pfam (PDB)e 77 712 (96) 51122 (94) 9 901 386 (75) 6073 2869

CATH (v.3.5) 51 334 (64) 30862 (57) 6 906 806 (52) — —

SCOP (1.75A) 49 217 (61) 30527 (56) 6 912 489 (52) — —

aThe number of PDB structures with polypeptide sequences. bNumber of unique PDB sequences (no two sequences of 100% identity and same length), excluding those with all

Xs or �5 distinct amino acid types (943 sequences). cThe number of residues in the domain regions of unique sequences. dThe number of Pfam-A HMMs in each dataset.

Number of entries, unique sequence coverage and number of residues includes Pfam-B assignments. eAfter removing those Pfam hits with410 residues overlap to the one with

best E-value.

Fig. 3. Histograms of the lengths of the unassigned regions/entities in PDBfam. (a) Unassigned regions at N/C terminals. (b) Unassigned regions

between two Pfam assignments. (c) Entities with no Pfam assigned. The curves represent the cumulative percentage as a function of increasing length

(right axis)

Table 3. The split domains in Pfam in PDBfam

Format No. of Domains No. of Pfams Pfam example (HMM)

X[s1-e1]_Y_X[s2-e2] 1087 X¼ 96 Y¼ 116 (ADK[1-122])_(ADK_lid)_(ADK[123-150])

X[s1-e1]_(#)_X[s2-e2] 2519 422 (Hpt[1-69])_(35)_(Hpt[70-88])

X[s2-e2]_X[s1-e1] 451 75 (CIMR[46-145])_(CIMR[5-48])

Multichain domains 966 100 ((2)Trypsin[1-132]) (3)(Trypsin[135-220])
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contains Pfam interactions for 35449 entries. 3DID contains

interactions present in asymmetric units and does not utilize

the biological assemblies of the PDB. Table 4 compares our re-

sults with theirs. To accomplish this, we calculated the number of

Pfam interactions in the same set of 35 449 PDB entries in both

the asymmetric units [PDBfam(ASU)] and in the biological

assemblies [PDBfam(BA)]. The 3DID results are given in

the last column [3DID(ASU)]. Because we have more Pfam

assignments for these entries, we have more Pfam interactions

in the asymmetric units. However, when using the biological

assemblies, the number of interchain Pfam interactions

(both same-pfam and diff-pfam) are reduced from those of

the ASU.
The interactions in biological assemblies provide more accur-

ate estimates of our structural knowledge of how proteins inter-

act with each other, and how this information might be used to

investigate protein–protein interaction networks (Aragues et al.,

2005). In Table 5, we show the Pfams that interact with �30

other Pfams within the PDB. Several of these are domains that

typically bind short peptides from other proteins, including

MHC I, Pkinase, WD40 and efhand domains. Many are also

repeat modules that serve as protein–protein interaction

scaffolds.

4 DISCUSSION

One potential use for the assignments in PDBfam is in programs

that perform searches of the PDB with a query sequence or

structure and return lists of structures that contain similarities

to the query above some threshold. Examples include fold rec-

ognition servers, such as FFAS (Jaroszewski et al., 2005), and

structure similarity search servers, such as FATCAT. Often the

list of hits returned consists solely of the PDB entry and chain,

residue numbers and sequence or structure alignments. It is,

therefore, difficult to know whether the hits are related to each

other or whether they share any functional relationship with the

query. SCOP and CATH designations are sometimes provided,

which solves the first problem, but SCOP and CATH represent

less than two-thirds of the PDB, and their utility for this purpose

is, therefore, limited. We believe that our Pfam domain assign-

ments and associated clan information may be used to provide

both relationships among the hits (shared Pfams or clans) and

functional information of the hits (e.g. Pkinase).
Protein domain classification is also useful in the analysis of

the interactions of protein domains with each other. Our

ProtCID server provides information on clusters of similar inter-

faces between homologous proteins or protein pairs in multiple

crystal forms in the PDB (Xu and Dunbrack, 2011). Assignments

that are as accurate and complete as possible allow for better

identification of biologically relevant interfaces in multiple crys-

tal forms. Each Pfam in the PDB has a webpage in ProtCID

listing all PDB entries that contain that Pfam, the chain archi-

tecture of the protein containing the Pfam, and the chain archi-

tectures of any other protein sequences in the same entry. Thus,

looking up a Pfam in ProtCID provides information on other

domains that the Pfam may interact with, either within the same

chain or in protein complexes.

Fig. 4. Secondary structure of the unassigned regions/sequences and Pfam assignments in PDBfam. Disorder means the residues do not have coordinates

in the PDB file, whereas coil includes all residues that are not a-helix or b-strand. The y-axis is the number of coil plus disordered residues divided by the

total unassigned residues at that length range. A bar is 20 amino acids long, i.e. 1–20, 21–40, 41–60, etc. The last bar in each figure shows the values for

Pfam assignments. The next to last column in each figure shows the values for all regions with length4200. The light grey horizontal line is the rate of

coil in the Pfam assigned regions, and the dark grey horizontal line is the rate of coil plus disorder in the Pfam assignments

Table 4. Number of Pfams and Pfam pairs involved in interchain and

intrachain interactions in the PDB in PDBfam and 3DID

PDBfam

(all BA)

PDBfam

(BA)

PDBfam

(ASU)

3DID

(ASU)

Interchain

Same-Pfam 3499 2839 3338 3087

Diff-Pfam pairs 3958 3267 3455 2306

Intrachain

Same-Pfam 383 293 293 249a

Diff-Pfam pairs 3240 2236 2236 1271

Same-Pfams (inter and/or intra) 3576 2909 3382 3127

Diff-Pfam pairs (inter and/or

intra)

6132 4720 4796 3049

No. of Pfams in diff interactions 3982 3336 3338 2658

No. of Pfams in same or diff

interactions

5263 4445 4713 4265

No. of Entriesb 47458 35 449 35 449 35 449

BA, Biological assembly; ASU, asymmetric unit. aAfter removing those Pfams that

are split domains in our Pfam assignments. b47 458 entries in current PDB (‘all BA’)

that have one or more Pfam/Pfam interactions in biological assemblies. 35 449 PDB

entries listed in 3did_flat_Apr_3_2011.dat after removing obsolete entries.
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Our assignments using Pfam have some limitations. We have

defined a pipeline using a combination of available methods that

is relatively efficient and can be applied automatically on a regu-

lar basis. It is possible that different choices might increase the

representation slightly (e.g. different ways of defining the con-

sensus sequences or the use of several structure alignment pro-

grams). But the coverage is high as it is, and exploring further

avenues is likely to be a case of rapidly dwindling returns.
Pfam does not have models for some kinds of proteins. For

instance, about half of the entities4250 amino acids that do not

have Pfam assignments in our results are virus proteins, espe-

cially virus capsids. Pfam is organized into clans, and these may

in most cases be useful for inferring structural relationships at the

superfamily level. But many clans have HMMs of very different

lengths; therefore, the structural domains are not likely to be

completely consistent across clans. Also, it is likely the case

that some superfamily relationships evident in SCOP and

CATH are missed by the Pfam clans. We cannot make assign-

ments to many peptides, either because the parent UniProt se-

quence is not known or does not exist or because the peptide

belongs to the region of a protein that is not within a Pfam

domain. It is likely that intrinsically disordered protein regions

have less coverage in Pfam than folded domains, and many pep-

tides bound to proteins come from these regions. Nevertheless,

our assignments cover 99.4% of unique sequences in the PDB

450 amino acids. We believe they will be useful in numerous

applications in structural bioinformatics and structure

prediction.

Finally, the procedure we have outlined for PDBfam is suffi-

ciently general that it may be used to make assignments of other

domain classification systems to any set of target sequences.

Because of the power of HMMs to represent profile families,

such a classification of domains should be represented as a set

of HMMs. With the program HHblits, this is straightforward to

do even if the classification system is based on a small number of

sequences. Further, structural information also significantly im-

proves the results. If the target sequences are not of known struc-

ture, then they may be assigned to known folds through the

sequence search methods used here. This should be done at strin-

gent levels of statistical significance so as not to add another

layer of uncertainty to the assignment process. If the domain

classification system is structure based, then the other side of

the equation is already satisfied. We can imagine a number of

further applications that will be presented later, including Pfam

assignments to human proteins and assignment of SCOP do-

mains to the entire PDB on an ongoing basis.
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