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Presentation outline

• Introduction: Precision Medicine and Variant interpretation.  

• Protein variants: sequence and structural features. 

• Meta prediction: selection of highly-accurate predictions. 

• Impact of noncoding variants: conservation in noncoding regions. 

• Prediction assessment: The CAGI experiments. 



Precision medicine
In the last decade, the cost of a whole genome sequencing experiment 
dropped below $1000. The increasing amount of sequencing data is raising 
important bioinformatics challenges.

Fernald GH, et al (2011). Bioinformatics. 27: 1741-1748.

1. Robust sequencing data processing 
methods

2. Interpretation of the functional effect 
and the impact of genomic variations

3. Integrating the molecular mechanisms  
and data to capture complexity of the 
system

4. Make the data clinically relevant

Precision 
Medicine



Single Nucleotide Variants
Single Nucleotide Variants (SNVs) 
is a DNA sequence variation occurring when a single nucleotide A, T, C, or G in the 
genome differs between members of the species. 

It is used to refer to Polymorphisms when the population frequency is ≥ 1% 

SNVs occur at any position and can be 
classified on the base of their locations. 


Coding SNVs can be subdivided into two 
groups: 
 


Synonymous: when single base substitutions do 
not cause a change in the resultant amino acid  

Non-synonymous or Single Amino Acid Variants 
(SAVs): when single base substitutions cause a 
change in the resultant amino acid. 

http://www.ncbi.nlm.nih.gov

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov


1000 Genomes
The 1000 Genomes Project aims to create the largest public catalogue of 
human variations and genotype data. Last version released the genotype of 
~2,500 individuals.  

variant calling. Finally, by initially analysing the data with multiple
genotype and variant calling algorithms and then generating a con-
sensus of these results, the project reduced genotyping error rates by
30–50% compared to those currently achievable using any one of the
methods alone (Supplementary Fig. 1 and Supplementary Table 12).
We also used local realignment to generate candidate alternative

haplotypes in the process of calling short (1–50-bp) indels15, as well as
local de novo assembly to resolve breakpoints for deletions greater
than 50 bp. The latter resulted in a doubling of the number of large
(.1 kb) structural variants delineatedwith base-pair resolution16. Full
genome de novo assembly was also performed (Supplementary
Information), resulting in the identification of 3.7megabases (Mb)
of novel sequence not matching the reference at a high threshold for
assembly quality and novelty. All novel sequence matched other
human and great ape sequences in the public databases.

Rates of variant discovery
In the trio project, with an average mapped sequence coverage of 423
per individual across six individuals and 2.3 gigabases (Gb) of accessible
genome, we identified 5.9 million SNPs, 650,000 short indels (of
1–50 bp in length), and over 14,000 larger structural variants. In the
low-coverage project, with average mapped coverage of 3.63 per indi-
vidual across 179 individuals (Supplementary Fig. 2) and 2.4Gb of
accessible genome, we identified 14.4 million SNPs, 1.3 million short
indels and over 20,000 larger structural variants. In the exon project,
with an average mapped sequence coverage of 563 per individual
across 697 individuals and a target of 1.4Mb, we identified 12,758
SNPs and 96 indels.
Experimental validation was used to estimate and control the FDR

fornovel variants (SupplementaryTable 3). The FDR for each complete
call set was controlled to be less than 5% for SNPs and short indels,
and less than 10% for structural variants. Because in an initial test

almost all of the sites that we called that were already in dbSNP were
validated (285 out of 286), in most subsequent validation experiments
we tested only novel variants and extrapolated to obtain the overall
FDR. This process will underestimate the true FDR if more SNPs listed
in dbSNP are false positives for some call sets. The FDR for novel
variants was 2.6% for trio SNPs, 10.9% for low-coverage SNPs, and
1.7% for low-coverage indels (Supplementary Information and Sup-
plementary Tables 3 and 4a, b).
Variation detected by the project is not evenly distributed across

the genome: certain regions, such as the human leukocyte antigen
(HLA) and subtelomeric regions, show high rates of variation,
whereas others, for example a 5-Mb gene-dense and highly conserved
region around 3p21, show very low levels of variation (Supplementary
Fig. 3a). At the chromosomal scale we see strong correlation between
different forms of variation, particularly between SNPs and indels
(Supplementary Fig. 3b). However, we also find heterogeneity par-
ticular to types of structural variant, for example structural variants
resulting from non-allelic homologous recombination are apparently
enriched in the HLA and subtelomeric regions (Supplementary Fig.
3b, top).

Variant novelty
As expected, the vast majority of sites variant in any given individual
were already present in dbSNP; the proportion newly discovered dif-
fered substantially among populations, variant types and allele fre-
quencies (Fig. 1). Novel SNPs had a strong tendency to be found
only in one analysis panel (set of related populations; Fig. 1a). For
SNPs also present in dbSNP version 129 (the last release before 1000
Genomes Project data), only 25%were specific to a single low-coverage
analysis panel and 56% were found in all panels. On the other hand,
84% of newly discovered SNPs were specific to a single analysis panel
whereas only 4%were found in all analysis panels. In the exon project,

Table 1 | Variants discovered by project, type, population and novelty
a Summary of project data including combined exon populations

Statistic

Low coverage Trios
Exon
(total)

Unionacross
projectsCEU YRI CHB1JPT Total CEU YRI Total

Samples 60 59 60 179 3 3 6 697 742
Total raw bases (Gb) 1,402 874 596 2,872 560 615 1,175 845 4,892
Total mapped bases (Gb) 817 596 468 1,881 369 342 711 56 2,648
Mean mapped depth (3) 4.62 3.42 2.65 3.56 43.14 40.05 41.60 55.92 NA
Bases accessed (% of genome) 2.43 Gb

(86%)
2.39 Gb
(85%)

2.41 Gb
(85%)

2.42 Gb
(86.0%)

2.26 Gb
(79%)

2.21 Gb
(78%)

2.24 Gb
(79%)

1.4 Mb NA

No. of SNPs (% novel) 7,943,827
(33%)

10,938,130
(47%)

6,273,441
(28%)

14,894,361
(54%)

3,646,764
(11%)

4,502,439
(23%)

5,907,699
(24%)

12,758
(70%)

15,275,256
(55%)

Mean variant SNP sites per individual 2,918,623 3,335,795 2,810,573 3,019,909 2,741,276 3,261,036 3,001,156 763 NA
No. of indels (% novel) 728,075

(39%)
941,567

(52%)
666,639

(39%)
1,330,158

(57%)
411,611

(25%)
502,462

(37%)
682,148

(38%)
96

(74%)
1,480,877

(57%)
Mean variant indel sites per individual 354,767 383,200 347,400 361,669 322,078 382,869 352,474 3 NA
No. of deletions (% novel) ND ND ND 15,893

(60%)
6,593
(41%)

8,129
(50%)

11,248
(51%)

ND 22,025
(61%)

No. of genotyped deletions (% novel) ND ND ND 10,742
(57%)

ND ND 6,317
(48%)

ND 13,826
(58%)

No. of duplications (% novel) 259
(90%)

320
(90%)

280
(91%)

407
(89%)

187
(93%)

192
(91%)

256
(92%)

ND 501
(89%)

No. of mobile element insertions (% novel) 3,202
(79%)

3,105
(84%)

1,952
(76%)

4,775
(86%)

1,397
(68%)

1,846
(78%)

2,531
(78%)

ND 5,370
(87%)

No. of novel sequence insertions (% novel) ND ND ND ND 111
(96%)

66
(86%)

174
(93%)

ND 174
(93%)

b Exon populations separately

Statistic CEU TSI LWK YRI CHB CHD JPT

Samples 90 66 108 112 109 107 105
Total collected bases (Gb) 151 64 53 147 93 127 211
Mean mapped depth on target (3) 73 71 32 62 47 62 53
No. of SNPs (% novel) 3,489 (34%) 3,281 (34%) 5,459 (50%) 5,175 (46%) 3,415 (47%) 3,431 (50%) 2,900 (42%)
Variant SNP sites per individual 715 727 902 794 713 770 694
No. of indels (no. novel) 23 (10) 22 (11) 24 (16) 38 (21) 30 (16) 26 (13) 25 (11)
Variant indel sites per individual 3 3 3 3 3 2 3

NA, not applicable; ND, not determined.

ARTICLE RESEARCH
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Macmillan Publishers Limited. All rights reserved©2010

1000 Genomes Project Consortium (2010). Nature. 467: 1061-1073.



Variant databases

http://www.ncbi.nlm.nih.gov/snp

dbSNP @ NCBI
Single Nucleotide Variants 

Homo sapiens            917,705,245

https://www.uniprot.org/docs/humsavar 

humsavar @ UniProt Single Amino acid Variants 

Homo sapiens                     79,745 

Pathogenic                         31,398 

Benign                               39,584 

Jul 2021

Single Nucleotide Variants 

Homo sapiens                    872,786 

Pathogenic                         58,167 

Benign                             119,050
https://www.ncbi.nlm.nih.gov/clinvar/

Clinvar @ NCBI

http://www.ncbi.nlm.nih.gov/snp
http://www.ncbi.nlm.nih.gov/snp
https://www.uniprot.org/docs/humsavar
https://www.uniprot.org/docs/humsavar
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/


Effects of variants
Impact of coding variants

• Physico-chemical properties of the substituted residue

• Evolutionary important residues in specific protein sites

• Sequence–function relationships

• Structure–function relationships


Impact of noncoding variants

• Transcription

• Pre-mRNA splicing

• MicroRNA binding

• Altering post-translational modification sites

Cline and Karchin (2011) Bioinformatics, 27; 441-448.

SNV 

Benign

Pathogenic the variant is related to a 
Mendelian disorder   

the variant does not affect 
human health  



Protein variants



Sequence, Structure & Function
Genomic variants in sequence motifs can affect protein function. 

Mutation S362A of P53 affect the interaction with hydrolase USP7 and the 
deubiquitination of the protein.  

A nonsynonymous variant  can affect 
the protein structure causing the loss 
of stability of the protein.


Mutation R411L results in the loss of a 
salt bridge, destabilizing the structure 
of the IVD dehydrogenase. R411

Transcription  
activation

Interaction 
with DNA

Interaction 
with USP7

Interaction  
with WWOX

S362

Interaction 
with SH3



                                                1 [        .         .         .         .         :         .         .         . 80 
                  bits   E-value  N 100.0%        MDVGSKEVLMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLIVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEAQQ    
 1 P11686          400    1e-110  1 100.0%        MDVGSKEVLMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLIVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEAQQ    
 2 P15783          280     3e-74  1  80.6%        MDVGSKEVLMESPPDYTAVPGGRLLIPCCPVNIKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSITGPEAQQ    
 3 P21841          276     6e-73  1  78.7%        MDMSSKEVLMESPPDYSAGPRSQFRIPCCPVHLKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSIGAPETQK    
 4 P22398          270     3e-71  1  78.2%        MDMGSKEALMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEVQQ    
 5 Q1XFL5          268     1e-70  1  80.2%        MDVGSKEVLMESPPDYSAVPGGRLRIPCCPVNLKRLLVVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSLAGPEAQQ    
 6 UPI0000E219B8   261     1e-68  1  89.4%        MDVGSKEVLMESPPDYSAAPRGRFGIPCCPVHLKRLLIVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSIGAPEAQQ    
 7 UPI00005A47C8   259     6e-68  1  78.2%        MDVGSKEVLIESPpdYSAAPRGRLGIPCFPSSLKRLLIIVVVIVLVVVVIVGALLMGLHMSQKHTEMVLEMSMGGPEAQQ    
 8 Q3MSM1          206     8e-52  1  83.4%        MDVGSKEVLMESPPDYSAVPGGRLRIPCCPVNLKRLLVVVVVVVLVVVVIVGALLMGLHMSQKHTEMVLEMSLAGPEAQQ    
 9 Q95M82           85     3e-15  1  82.4%        -------------------------------------------------------------------VLEMSIGGPEAPQ    
10 UPI000155C160    84     4e-15  1  48.9%        --------------------------------------------------------------------------------    
11 UPI0001555957    82     1e-14  1  83.6%        ------KVRADSPPDYSVAPRGRLGIPCCPFHLKRLLIIVVVVVLIVVVVLGALLMGLHMSQKHTEM-------------    
12 B3DM51           81     4e-14  1  34.8%        ----------------------------------------------------------HMSQKHTETIFQMSL-----QD    

Conserved or not?
In positions 66 the Glutamic acid is highly conserved Asparagine in position 138 
is mutated Threonine or Alanine

.....

.....   

                                               81          .         1         .         .         .         .         :         . 160
                  bits   E-value  N 100.0%        RLALSEHLVTTATFSIGSTGLVVYDYQQLLIAYKPAPGTCCYIMKIAPESIPSLEALNRKVHNFQMECSLQAKPAVPTSK    
 1 P11686          400    1e-110  1 100.0%        RLALSEHLVTTATFSIGSTGLVVYDYQQLLIAYKPAPGTCCYIMKIAPESIPSLEALNRKVHNFQMECSLQAKPAVPTSK    
 2 P15783          280     3e-74  1  80.6%        RLALSERVGTTATFSIGSTGTVVYDYQRLLIAYKPAPGTCCYIMKMAPQNIPSLEALTRKLQNF------QAKPQVPSSK    
 3 P21841(Mouse)   276     6e-73  1  78.7%        RLAPSERADTIATFSIGSTGIVVYDYQRLLTAYKPAPGTYCYIMKMAPESIPSLEAFARKLQNF------RAKPSTPTSK    
 4 P22398          270     3e-71  1  78.2%        RLALSEWAGTTATFPIGSTGIVTCDYQRLLIAYKPAPGTCCYLMKMAPDSIPSLEALARK---------FQANPAEPPTQ    
 5 Q1XFL5          268     1e-70  1  80.2%        RLALSEHVGTTATFSIGSSGNVVYDYQRLLIAYKPAPGTCCYVMKMSPQSMPSLEALTKKFQNFQV--SVQAKPSTPTSK    
 6 UPI0000E219B8   261     1e-68  1  89.4%        RLALSEHLVTTATFSIGSTGLVVYDYQQLLIAYKPAPGTCCYIMKIAPESIPSLEALTRKVQNFQGQWKPQGERKRPGKR    
 7 UPI00005A47C8   259     6e-68  1  78.2%        RLALQERVGTTATFSIGSTGIVVYDYQRLLIAYKPAPGTCCYIMKMTPENIPSLEALTRKFQDFQV------KPAVSTSK    
 8 Q3MSM1          206     8e-52  1  83.4%        RLALSEHVGTTATFSIGSSGNVVYDYQRLLIAYKPAPGTCCYVMKMSPQSMPSLEALTKKFQNFQ---------------    
 9 Q95M82           85     3e-15  1  82.4%        RLALRGRADTTATFSIGSTGIVVYDYQRLLIAYKPAPG------------------------------------------    
10 UPI000155C160    84     4e-15  1  48.9%        ---------------------------RLLIAYQPSPGATCYVTKMAPENIPSLDAITRE---FQ---SYQAKPSMPATK    
11 UPI0001555957    82     1e-14  1  83.6%        --------------------------------------------------------------------------------    
12 B3DM51           81     4e-14  1  34.8%        GSSTGAHGTGVATfgINSSASVVYDYSKLLIGTRPRPGHACYITRMDPEQVQSLETIAESV----------------LSK    



Sequence profile
The protein sequence profile is calculated running BLAST on the UniRef90 dataset and 
selecting only the hits with e-value < 10-9.  


The distributions of the frequency of the wild-type residues for Pathogenic and Benign 
variants are significantly different. 

Capriotti et al (2012). Briefings in Bioinformatics. 13; 495-512.
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SNPs&GO input features
C48W

. . . 40. . . . | . . . .50 . . .  
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Mutated residue Sequence environment
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Sequence information is encoded in 2 vectors 
each one composed by 20 elements. The first 
vector encodes for the mutation and the 
second one for the sequence environment  

Protein sequence profile information derived 
from a multiple sequence alignment. It is 
encoded in a 5 elements vector corresponding 
to different features general and local features

The GO information are encoded in a 2 elements 
vector corresponding to the number unique of 
GO terms associated to the protein sequences 
and the sum of the logarithm of the total number 
of Pathogenic and Benign variants for each GO 
term.

GO:Y
Pathogenic variant
Benign variant

Protein
GO term

GO space
GO:X

GO:Z

GO:T



SNPs&GO performance
SNPs&GO results in better performance with respect to previously developed methods. 

Method Q2 P[D] Q[D] P[N] Q[N] C PM

PolyPhen 0.71 0.76 0.75 0.63 0.64 0.39 58

SIFT 0.76 0.75 0.76 0.77 0.75 0.52 93

PANTHER 0.74 0.77 0.73 0.71 0.76 0.48 76

SNPs&GO 0.82 0.83 0.78 0.80 0.85 0.63 100
D = Pathogenic N = Benign DB= 33672 nsSNVs
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Calabrese et al. (2009) Human Mutation 30, 1237-1244.



Structure environment
There is a significant difference between the distributions of the Relative Solvent 
Accessibility for Pathogenic and Benign variants.  The median values of their 
distributions are ~0.1 and 0.35 respectively.

Capriotti and Altman. (2011) BMC Bioinformatics.12 (Suppl 4); S3. 
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Analysis of the 3D interactions
Using the whole set of SAVs with known structure, we calculate  the log odd score of 
the ratio between the frequencies of the interaction between residue i and j for 
Pathogenic and Benign variants. 

Lost Interactions Gained interactions
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The structure-based method
The method takes as input  a 52-element vector encoding for mutation; structure 
environment, sequence profile and functional score based on GO terms.  
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Sequence vs structure
The structure-based method results in better accuracy with respect to the sequence-
based one. Structure based prediction are 3% more accurate and correlation 
coefficient increases of 0.06. If 10% of FP are accepted the TPR increases of 7%.   

Q2 P[D] S[D] P[N] S[N] C AUC

SNPs&GO 0.82 0.81 0.83 0.82 0.81 0.64 0.89

SNPs&GO3d 0.85 0.84 0.87 0.86 0.83 0.70 0.92

http://snps.biofold.org/snps-and-go

SNPs&GO
SNPs&GO3d

http://bioinfo.uib.es/~emidio/cgi-bin/DrCancer
http://bioinfo.uib.es/~emidio/cgi-bin/DrCancer


Prediction example
Damaging missing Cys-Cys interaction in the Glycosylasparaginase.  The mutation 
p.Cys163Ser results in the loss of the disulfide bridge between Cys163 and Cys179. 
This amino acid variant is responsible for Aspartylglucosaminuria. 

1APY: Chain A, Res: 2.0 Å

C163

C179

C163



Meta prediction approach



Protein variant predictors
Many predictor of the effect of Single Amino acid Variants (SAVs) are available. They 
mainly use information from multiple sequence alignment to predict the effect of a 
given mutation. In this study we consider


• PhD-SNP: Support Vector Machine-based method using sequence and profile 
information (Capriotti et al. 2006).


• PANTHER: Hidden Markov Model-based method using a HMM library of protein 
families (Thomas and Kejariwal 2004).


• SNAP: Neural network based method to predict the functional effect of single poit 
mutations (Bromberg et al. 2008).


• SIFT: Probabilistic method based on the analysis of multiple sequence alignments 
(Ng and Henikoff 2003).



Predictors accuracy
The accuracy of each predictor has been tested on a set of 35,986 mutations equally 
distributed between Pathogenic and Benign variants. PhD-SNP results in better 
accuracy but is the only one optimized using a cross-validation procedure.

SNAP shows lowest accuracy but it has been developed for a different task. 

Q2 P[D] S[D] P[N] S[N] C PM

PhD-SNP 0.76 0.78 0.74 0.75 0.78 0.53 100

PANTHER 0.74 0.79 0.73 0.69 0.74 0.48 74

SNAP 0.64 0.59 0.90 0.79 0.38 0.33 100

SIFT 0.70 0.74 0.64 0.68 0.76 0.41 92
DB:  Benign (N) 17883 and Pathogenic (D) 17883 



Predictors tree
Using the prediction similarity we can build the predictors tree

SNAP
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SIFT

SIFT

PANTHER

PANTHER
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PhD-SNP
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UPGMA tree based on correlations

UPGMA tree based on predictions
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SNAP
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Prediction analysis
The accuracy of the predictions has been evaluated considering three different 
subset


• Consensus: all the predictions returned by the methods are in agreement.

• Tie: equal number of methods predicting Pathogenic and Benign 

• Majority: One of the two possible classes is predominant    

Q2 P[D] S[D] P[N] S[N] C AUC %DB

PhD-SNP 0.76 0.78 0.74 0.75 0.78 0.53 0.84 100

Consensus 0.87 0.87 0.92 0.87 0.79 0.73 0.89 46

Majority 0.70 0.67 0.56 0.72 0.80 0.37 0.82 40

Tie 0.61 0.51 0.43 0.66 0.73 0.16 0.67 14



Subset conservation
The distributions of the wild-type frequencies for Pathogenic and Benign 
variants on the Consensus subset have very little overlap.

Consensus Majority Tie

Pathogenic Benign Pathogenic Benign Pathogenic Benign

                  



From coding  
to noncoding



Whole-genome predictions
Most of the genetic variants occur in noncoding region that represents >98% 
of the whole genome.

Predict the effect of SNVs in noncoding region is a challenging task because 
conservation is more difficult to estimate.


The sequence alignment is more complex task for noncoding regions.  



PhyloP100 score
Conservation analysis based on the pre-calculated score available at the UCSC 
revealed a significant difference between the distribution of the PhyloP100 
scores in Pathogenic and Benign SNVs.
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PhD-SNPg
PhD-SNPg is a simple method that takes in input 35 sequence-based features 
from a window of 5 nucleotides around the mutated position. 

Method
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Benchmarking  
PhD-SNPg has been tested in cross-validation on a set of 35,802 SNVs and on a blind 
set of 1,408 variants recently annotated.
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Q2 TNR NPV TPR PPV MCC F1 AUC

PhD-SNPg 0.861 0.774 0.884 0.925 0.847 0.715 0.884 0.924

Coding 0.849 0.671 0.845 0.938 0.850 0.651 0.892 0.908

Non-Coding 0.876 0.855 0.911 0.901 0.839 0.753 0.869 0.930

Capriotti and Fariselli. (2017) Nucleic Acids Res. PMID: 28482034.



Blind testing



CAGI experiments
The Critical Assessment of Genome Interpretation  is a community experiment to 
objectively assess computational methods for predicting the phenotypic impacts of 
genomic variation.

https://genomeinterpretation.org/



The NAGLU challenge

NAGLU is a lysosomal glycohydrolyase which deficiency causes a rare disorder 
referred as Sanfilippo B disease


Challenge: Predict the effect of the 165 variants on NAGLU enzymatic activity.


The submitted prediction should be a numeric value ranging from 0 (no activity) to 1 
(wild-type level of activity). 



A posteriori evaluation
An evaluation of the performance shows that SNPs&GO reaches similar accuracy 
than the best method (MutPred2)

Method Q2 AUC MC RMSE rPearson  rSpearman rKendallTau

MutPred2 0.780 0.850 0.565 0.30 0.595 0.619 0.443

SNPs&GO 0.800 0.854 0.603 0.33 0.575 0.616 0.445

SNPs&GO09 0.750 0.749 0.499 0.46 0.477 0.495 0.409



Conclusions

• Evolutionary information is an important feature for the prediction of deleterious variants. 
The pathogenic variants tend to occur in conserved protein sites.


• Structural information encoded through the relative solvent accessibility and the structure 
environment improves the predictions of pathogenic variants. 


• The implementation of meta-prediction based approach allows to select highly-accurate 
predictions.


• Nucleotide conservation is an important feature to predict the impact of SNVs also in 
noncoding regions.
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Hybrid method structure

Protein Sequence
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Hybrid Method is based on a decision tree with  SVM-Sequence coupled to 
SVM-Profile. Tested on more than 21,000 variants our method reaches 74% 
of accuracy and 0.46 correlation coefficient. 

Capriotti et al. (2006) Bioinformatics, 22; 2729-2734.



Classification results

  Q2 P[D] Q[D] P[N] Q[N] C

SVM-Sequence 0.70 0.71 0.84 0.65 0.46 0.34

SVM-Profile 0.70 0.74 0.49 0.68 0.86 0.39

HybridMeth 0.74 0.80 0.76 0.65 0.70 0.46

SVM–Sequence is more accurate in the prediction of disease related mutations and  
SVM-Profile is more accurate in the prediction of neutral polymorphism.  

Both methods have the same Q2 level.

D = Disease related  N = Neutral

The Hybrid Method have higher accuracy than the previous two methods 
increasing the accuracy up to 74% and the correlation coefficient up to 0.46.

http://snps.biofold.org/phd-snp

http://snps.biofold.org/phd-snp
http://snps.biofold.org/phd-snp


Gene Ontology
The Gene Ontology project is a major bioinformatics 
initiative with the aim of standardizing the 
representation of gene and gene product attributes 
across species and databases. The project provides 
a controlled vocabulary of terms for describing gene 
product characteristics and gene product 
annotation data. 

The ontology is represented by a direct acyclic graph covers three domains; 


• cellular component, the parts of a cell or its extracellular environment; 


• molecular function, the elemental activities of a gene product at the molecular level, such as 
binding or catalysis


• biological process, operations or sets of molecular events with a defined beginning and end, 
pertinent to the functioning of integrated living units: cells,tissues, organs and organisms.

http://www.geneontology.org/

http://www.geneontology.org/GO.downloads.ontology.shtml
http://www.geneontology.org/GO.downloads.ontology.shtml
http://www.geneontology.org
http://www.geneontology.org


The P16 challenge
CDKN2A is the most common, high penetrance, susceptibility gene identified to 
date in familial malignant melanoma. p16INK4A  is one of the two oncosuppressor  
which promotes cell cycle arrest by inhibiting cyclin dependent kinase (CDK4/6).


Challenge: Evaluate how different variants of p16 protein impact its ability to block 
cell proliferation.


Provide a number between 50% that represent the normal proliferation rate of 
control cells and 100% the maximum proliferation rate in case cells.




The calibration refers to the correspondence between the probabilistic output of the 
method and the observed fraction of positive cases.


On ~2,000 newly annotated variants PhD-SNPg and CADD among the most accurate 
and calibrated methods with AUC > 0.96 and Brier Score < 0.07. Nevertheless CADD 
output needs to be transformed to be calibrated.

Prediction calibration

BSAll BSCoding BSNoncoding

PhD-SNPg 0.07 0.10 0.03

CADD* 0.05 0.05 0.04

Benevenuta, Capriotti and Fariselli. (2020) Bioinformatics PMID: 33492342.

S. Benevenuta et al. 

Fig. 1.  (A) ROC curves of PhD-SNP
g
, FATHMM-MKL, CADD, DANN and Eigen on 

the complete dataset (both coding and non-coding variants). DeepSea has been evaluated 

only on the subset of non-coding variants, since it has been developed only to score them. 

AUCs for coding and non-coding variants are reported in Table S2. True and false-positive 

rates are defined in Supplementary Materials. (B) Calibration curves of the predictors on 

coding and non-coding variants. CADD and Eigen scores have been modified using a sig-

moid transformation (1/ (1+exp(-A – x + B))). The best parameters were: A=1, B=2.5 for 

CADD and A=1, B=1.63/0.05 for Eigen (coding and non-coding variants were transformed 

separately, since Eigen provides two different sets of scores). 

 
An ideal classifier would have an AUC-ROC of 1, while a completely 
random classifier would have an AUC-ROC of 0.5. AUC is an efficient 
way to reject tools that fail to differentiate between pathogenic and benign 
variants. 

From Fig. 1A we can see that all predictors perform quite well as dis-
criminators on the selected dataset (All the predictions of the methods are 
reported in Supplementary File 1). However, none of the predictors has 
been validated for its calibration. Using an ill-calibrated classifier could 
lead to an incorrect interpretation of the functional effect of the genetic 
variant (it could be over-estimated or under-estimated). 

3 Calibration evaluation 
A standard way to examine whether or not a predictor is calibrated is to 
plot the calibration curve or using the Brier score (Supplementary Materi-
als). The calibration curve shows whether the predicted probabilities agree 
with the observed probabilities. If the calibration curve lies on the diago-
nal, the predictor is perfectly calibrated, and it requires no further investi-
gation. The deviation from the diagonal indicates the miscalibration. Brier 
score is a numerical value that ranges from zero to one (one being totally 
uncalibrated, zero being perfect calibration). 

To evaluate the calibration of a method that returns a probability score 
we compared its outputs with the observed class frequency. For Eigen and 
CADD, which provided only raw scores, we transformed their outputs us-
ing an optimal sigmoid function (Fig. 1B). From Figs. 1A and 1B, we ob-
served that despite showing similar AUCs, the tested tools have signifi-
cantly different calibration curves. Indeed, PhD-SNPg is the best-cali-
brated method, while DeepSea and DANN resulted in the least calibrated 
predictions. However, all the presented methods can be calibrated using 
the isotonic-regression, which transforms the output of a non-calibrated 
classifier in a very well-calibrated one (Niculescu-Mizil and Caruana, 
2005). The effect of this kind of transformation is reported in Table 1 (and 
Fig.S4), where the isotonic-regression mapping is computed using a 10-
fold cross-validation procedure. The cross-validation procedure is neces-
sary to evaluate the calibration on never-seen-before data (with at least 
500-1000 datapoints). The sigmoid calibration, although it requires very 
few data-points, was less effective and not all the methods can be cali-
brated (Fig. S6-S7).  

 

Table 1.  Brier scores of the methods on the dataset 

Predictor BSCoding BSNon-Coding BSAll 

 PhD-SNPg 0.10 / 0.10 0.03 / 0.03 0.07 / 0.07 
 DANN 0.24 / 0.09 0.27 / 0.05 0.25 / 0.07 
 FATHMM 0.17 / 0.15 0.07 / 0.04 0.14 / 0.12 
 DeepSea - 0.43 / 0.08 - 
 Eigen* 0.14 / 0.07 0.06 / 0.04 0.11 / 0.06 
 CADD* 0.06 / 0.05 0.04 / 0.03 0.05 / 0.05 

Brier scores (BS) of the methods before and after isotonic calibration. 
* Uncalibrated scores for Eigen and CADD are obtained after sigmoid 
transformation 

4 Conclusion  
Despite showing comparable AUCs, different methods may have sig-

nificantly different calibration curves. Usually, the AUC is taken as the 
only evaluation criterion to assess the validity of the model. Thus, a model 
is chosen without checking its calibration. Nonetheless, its scores might 
still be used and interpreted as a measure of the "pathogenicity" of the 
variants. This assumption could lead to an incorrect interpretation of the 
functional effects and their probability meaning. 

According to our analysis, from the user standpoint, we suggest select-
ing a method based both on the classification and calibration perfor-
mances.  

In particular, for the end-users, who do not want to process the predictor 
outputs, we suggest to use PhD-SNPg, as the ready-on-the-shelf method 
that is both accurate and naturally calibrated (Fig.1).  For developers, and 
expert users who prefer other tools (such as CADD or FATHMM), we 
recommend calibrating the predictor before its usage. The calibration can 
be performed using suitable software such as scikit-learn (Pedregosa, F. 
et al., 2011) calibration suite, which transforms the predictor outputs as 
shown in Supplementary Materials (Figs. S4, S14-S19).  
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SNPs&GO prediction

Variant Prediction Real ∆ %WT %MUT
G23R 0.932 0.918 0.014 84 0
G23S 0.923 0.693 0.230 84 1
G23V 0.940 0.901 0.039 84 0
G23A 0.904 0.537 0.367 84 2
G23C 0.946 0.866 0.080 84 0
G35E 0.590 0.600 0.010 12 14
G35W 0.841 0.862 0.021 12 0
G35R 0.618 0.537 0.081 12 4
L65P 0.878 0.664 0.214 15 1
L94P 0.979 0.939 0.040 56 0

Proliferation rates predicted using the output of SNPs&GO without any optimization.



P16 predictions 
SNPs&GO resulted among the best methods for predicting the impact of P16INK4A  
variants on cell proliferation. 

Method Q2 AUC MC RMSE rPearson  rSpearman rKendallTau

SPARK-LAB 0.900 0.920 0.816 0.30 0.595 0.619 0.443
SNPs&GO 0.700 0.880 0.500 0.33 0.575 0.616 0.445
DrCancer 0.600 0.840 0.333 0.46 0.477 0.495 0.409

Capriotti et al. (2017) Human Mutations. PMID: 28102005.



Normal Cell Growth

Abnormal Cell 
Proliferation

Variant Detection Network Analysis Phenotype Evaluation

PhD-SNPg
Variations in regulatory regions can perturb gene networks changing the topology 

or the edge weight of the biological network

http://snps.biofold.org/phd-snpg 
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PhD-SNPg implements a gradient-boosting algorithms that can run relying only on web resources

http://snps.biofold.org/phd-snpg/
http://snps.biofold.org/phd-snpg/

