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Presentation outline

e [ntroduction: Precision Medicine and Variant interpretation.
e Protein variants: sequence and structural features.

e Vieta prediction: selection of highly-accurate predictions.

e Impact of noncoding variants: conservation in noncoding regions.

e Prediction assessment: The CAGI experiments.



Precision medicine

In the last decade, the cost of a whole genome sequencing experiment
dropped below $1000. The increasing amount of sequencing data is raising
important bioinformatics challenges.

. Robust sequencing data processing
methods

Pharmaco- Personal

. Interpretation of the functional effect aaso hhetiint
and the impact of genomic variations
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Medicine

Fernald GH, et al (2011). Bioinformatics. 27: 1741-1748.



Single Nucleotide Variants

Single Nucleotide Variants (SNVs)

is a DNA sequence variation occurring when a single nucleotide A, T, C, or G in the

genome differs between members of the species.

It is used to refer to Polymorphisms when the population frequency is = 1%

SNVs occur at any position and can be
classified on the base of their locations.

Coding SNVs can be subdivided into two

groups:

Synonymous: when single base substitutions do
not cause a change in the resultant amino acid

Non-synonymous or Single Amino Acid Variants
(SAVs): when single base substitutions cause a

change in the resultant amino acid.
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1000 Genomes

The 1000 Genomes Project aims to create the largest public catalogue of
human variations and genotype data. Last version released the genotype of
~2,500 individuals.

Table 1 | Variants discovered by project, type, population and novelty

a Summary of project data including combined exon populations

Low coverage Trios

Exon Union across

Statistic CEU YRI CHB+JPT Total CEU YRI Total (total) projects
Samples 60 59 60 179 3 3 6 697 742
Total raw bases (Gb) 1,402 874 596 2,872 560 615 1,175 845 4,892
Total mapped bases (Gb) 817 596 468 1,881 369 342 711 56 2,648
Mean mapped depth (X) 4.62 3.42 2.65 3.56 43.14 40.05 41.60 55.92 NA
Bases accessed (% of genome) 243 Gb 2.39 Gb 241 Gb 242 Gb 2.26 Gb 2.21 Gb 224Gb 1.4 Mb NA

(86%) (85%) (85%) (86.0%) (79%) (78%) (79%)

No. of SNPs (% novel) 7943827 10938130 6,273,441 14894361 3,646,764 4502439 5907699 12,758 15,275,256
(339%) (479) (28%) (RAZ) (11%) (23%) (2497) (ZQ%) (BB %)
Mean variant SNP sites per individual 2918623 3,335,795 2,810,573 3,019909 2,741,276 3,261,036 3,001,156 763 NA
No. of indels (% novel) 728,075 941,567 666,639 1,330,158 411,611 502,462 682,148 96 1,480,877
(39%) (52%) (39%) (57%) (25%) (37%) 38%)  (74%) (57%)
Mean variant indel sites per individual 354,767 383,200 347,400 361,669 322,078 382,869 352,474 3 NA
No. of deletions (% novel) ND ND ND 15,893 6,593 8,129 11,248 ND 22,025
(60%) (41%) (50%) (51%) (61%)
No. of genotyped deletions (% novel) ND ND ND 10,742 ND ND 6,317 ND 13,826
(57%) (48%) (58%)
No. of duplications (% novel) 259 320 280 407 187 192 256 ND 501
(90%) (90%) (91%) (89%) (93%) (91%) (92%) (89%)
No. of mobile element insertions (% novel) 3,202 3,105 1,952 4775 1,397 1,846 2,531 ND 5,370
(79%) (84%) (76%) (86%) (68%) (78%) (78%) (87%)
No. of novel sequence insertions (% novel) ND ND ND ND 111 66 174 ND 174
(96%) (86%) (93%) (93%)

1000 Genomes Project Consortium (2010). Nature. 467: 1061-1073.




Variant databases

dbSNP @ NCBI

dbSNP

Single Nucleotide Variants

dbSNP contains human single nucleotide variations, microsatellites, and small-scale insertions and deletions along with
publication, population frequency, molecular consequence, and genomic and RefSeq mapping information for both

common variations and clinical mutations. H Oomo sa p i ens 9 1 7 , 7 O 5 , 2 4 5

http://www.ncbi.nlm.nih.gov/snp

Clinvar @ NCBI Single Nucleotide Variants

AAGAGATATATCT  clinVar

ACTTAGACCTCAC Homo sapiens 872,786
AGTCAGGGCAGAGC ClinVar aggregates information about genomic variation and its relationship to human health.
Co o Pathogenic 58,167
CCTATTGGTCTAT
Benign 119,050
https://www.ncbi.nlm.nih.gov/clinvar/ g !
humsavar @ UniProt Single Amino acid Variants
Homo sapiens 79,745
Pathogenic 31,398
Benign 39,584

https://www.uniprot.org/docs/humsavar

Jul 2021
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Effects of variants

Impact of coding variants
* Physico-chemical properties of the substituted residue
* Evolutionary important residues in specific protein sites
* Sequence—function relationships
e Structure—function relationships

Impact of noncoding variants
* Transcription
* Pre-mRNA splicing
* MicroRNA binding
 Altering post-translational modification sites

the variant is related to a

— Pathogenic — Mendelian disorder

SNV —

the variant does not affect
human health

—— Benign —

Cline and Karchin (2011) Bioinformatics, 27; 441-448.



Protein variants



Sequence, Structure & Function

Genomic variants in sequence motifs can affect protein function.
Mutation S362A of P53 affect the interaction with hydrolase USP7 and the
deubiquitination of the protein.

P S362
- e ——
Transcription Interaction Interaction Interaction Interaction
activation with WWOX with SH3  with DNA with USP7

A nonsynonymous variant can affect
the protein structure causing the loss
of stability of the protein.

Mutation R411L results in the loss of a
salt bridge, destabilizing the structure
of the IVD dehydrogenase.
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Sequence profile

The protein sequence profile is calculated running BLAST on the UniRef90 dataset and
selecting only the hits with e-value < 10-°.

The distributions of the frequency of the wild-type residues for Pathogenic and Benign
variants are significantly different.

1.0 _'_

0.2 -

Frequency of the Wild-Type Residue

0.0 I
Pathogenic Benign

Capriotti et al (2012). Briefings in Bioinformatics. 13; 495-512.
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Sequence information is encoded in 2 vectors
each one composed by 20 elements. The first
vector encodes for the mutation and the
second one for the sequence environment

Protein sequence profile information derived
from a multiple sequence alignment. It is
encoded in a 5 elements vector corresponding
to different features general and local features

The GO information are encoded in a 2 elements
vector corresponding to the number unique of
GO terms associated to the protein sequences
and the sum of the logarithm of the total number
of Pathogenic and Benign variants for each GO
term.



SNPs&GO performance

SNPs&GO results in better performance with respect to previously developed methods.

Mutation (Mut) Sequence Environment (Seq) Profile (Prof) | PANTHER | LGO (F)
ACDEFGHIKLMNPQRSTVWY| ACDEFGHIKLMNPQRSTVWY |FuFuNeNCl [P P PuNe| Neoleo
[ I IOOOOOIOOOOI ll]
RBF Kernel
[ Output ]

Method Q2 P[D] Q[D] P[N] Q[N] C PM

PolyPhen 0.71 0.76 0.75 0.63 0.64 0.39 58

SIFT 0.76 0.75 0.76 0.77 0.75 0.52 93

PANTHER 0.74 0.77 0.73 0.71 0.76 0.48 76

SNPs&GO 0.82 0.83 0.78 0.80 0.85 0.63 100
D = Pathogenic N = Benign DB= 33672 nsSNVs

Calabrese et al. (2009) Human Mutation 30, 1237-1244.



Structure environment

There is a significant difference between the distributions of the Relative Solvent
Accessibility for Pathogenic and Benign variants. The median values of their
distributions are ~0.1 and 0.35 respectively.

1.0 [0 Pathogenic
B Benign

0.8

Relative Solvent Accessibility

Pathogenic Benign

Capiriotti and Altman. (2011) BMC Bioinformatics.12 (Suppl 4); S3.



Analysis of the 3D interactions

Using the whole set of SAVs with known structure, we calculate the log odd score of
the ratio between the frequencies of the interaction between residue i and | for
Pathogenic and Benign variants.

n(i, j,Pathogenic) /| N(Pathogenic)
LC =log, :
n (i, j,Benign) /| N(Benign)
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The structure-based method

The method takes as input a 52-element vector encoding for mutation; structure
environment, sequence profile and functional score based on GO terms.

Mutation (Mut) Structure Environment (3D) Profile (Prof) | PANTHER | LGO (F)
ACDEFGHIKLMNPQRSTVWY]JACDEFGHI KLMNPQRSTVWYRSAJF,w Fx Ns N: Cl | P, P. Pu N¢

(0000E00000008080800 0 |00000 0000 N.L.

RBF Kernel

Q44 Q44 G43

Mutated Aminoacid O0<R<2A 2<R<4A

Bl4<RrR<6A



Sequence vs structure

The structure-based method results in better accuracy with respect to the sequence-
based one. Structure based prediction are 3% more accurate and correlation
coefficient increases of 0.06. If 10% of FP are accepted the TPR increases of 7%.

Q2 P[D] S[D] PI[N] S[N] C AUC

SNPs&GO 0.82 0.81 0.83 0.82 0.81 0.64 0.89

SNPs&GO3d 0.85 0.84 0.87 0.86 0.83 0.70 0.92
A 10

0.8

0.6

TPR

0.4

0.2 . 0.2
SNPs&GO3d
SNPS&GO | = = = = o DB

0.0 I | | | 0.0 | l I 1 T T ]

0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4 5 6 7 8 9
FPR RI

http://snps.biofold.org/snps-and-go
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Prediction example

Damaging missing Cys-Cys interaction in the Glycosylasparaginase. The mutation
p.Cys163Ser results in the loss of the disulfide bridge between Cys163 and Cys179.
This amino acid variant is responsible for Aspartylglucosaminuria.
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Meta prediction approach



Protein variant predictors

Many predictor of the effect of Single Amino acid Variants (SAVs) are available. They
mainly use information from multiple sequence alignment to predict the effect of a
given mutation. In this study we consider

e PhD-SNP: Support Vector Machine-based method using sequence and profile
information (Capriotti et al. 2006).

e PANTHER: Hidden Markov Model-based method using a HMM library of protein
families (Thomas and Kejariwal 2004).

e SNAP: Neural network based method to predict the functional effect of single poit
mutations (Bromberg et al. 2008).

e SIFT: Probabilistic method based on the analysis of multiple sequence alignments
(Ng and Henikoff 2003).



Predictors accuracy

The accuracy of each predictor has been tested on a set of 35,986 mutations equally
distributed between Pathogenic and Benign variants. PhD-SNP results in better
accuracy but is the only one optimized using a cross-validation procedure.

SNAP shows lowest accuracy but it has been developed for a different task.

Q2 P[D] S[D] P[N] S[N] C PM

PhD-SNP 0.76 0.78 0.74 0.75 0.78 0.53 100

PANTHER 0.74 0.79 0.73 0.69 0.74 0.48 74

SNAP 0.64 0.59 0.90 0.79 0.38 0.33 100

SIFT 0.70 0.74 0.64 0.68 0.76 0.41 92

DB: Benign (N) 17883 and Pathogenic (D) 17883




Predictors tree

Using the prediction similarity we can build the predictors tree

PhD-SNP SIFT

PANTHER

UPGMA tree based on correlations

SNAP
SIFT

'"PANTHER
PhD-SNP




Prediction analysis

The accuracy of the predictions has been evaluated considering three different
subset

e Consensus: all the predictions returned by the methods are in agreement.
e Tie: equal number of methods predicting Pathogenic and Benign
e Majority: One of the two possible classes is predominant

Q2 P[D] | S[D] | PIN] | S[N] C AUC | %DB

PhD-SNP | 0.76 | 0.78 | 0.74 | 0.75 | 0.78 | 0.53 | 0.84 100

Consensus | 0.87 | 0.87 | 092 | 0.87 | 0.79 | 0.73 | 0.89 46

Majority 0.7/0 | 0.6/ | 0.56 | 0.72 | 0.80 | 0.37 | 0.82 40

Tie 0.61 0.51 043 | 0.e6 | 0.7/73 | 0.16 | 0.67 14




variants on the Consensus subset have very little overlap.

Subset conservation

The distributions of the wild-type frequencies for Pathogenic and Benign
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From coding
to noncoding




Whole-genome predictions

Most of the genetic variants occur in noncoding region that represents >98%
of the whole genome.
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Predict the effect of SNVs in noncoding region is a challenging task because
conservation is more difficult to estimate.

The sequence alignment is more complex task for noncoding regions.



PhyloP100 score

Conservation analysis based on the pre-calculated score available at the UCSC
revealed a significant difference between the distribution of the PhyloP100
scores in Pathogenic and Benign SNVs.
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PhyloP: Pollard et al,, Genome Research 2010



PhD-SNP¢

PhD-SNPgis a simple method that takes in input 35 sequence-based features
from a window of 5 nucleotides around the mutated position.

Sequence PhyloP
5 A C G T N 7 100
T 0 0 0 1 0 -0.6 | 0.9
C 0 1 0 0 0 1.0 1 0.0
G-A|| -1 0 1 0 0 1.0
T 0 0 0 1 0
A 1 0 0 0 0
3’ 25-element " 10-element

Gradient
Boosting

[ Probability]

http://snps.biofold.org/phd-snpg/
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set of 1,408 variants recently annotated.

Benchmarking

PhD-SNP9 has been tested in cross-validation on a set of 35,802 SNVs and on a blind

Q2 TNR NPV TPR PPV MCC F1 AUC
PhD-SNPs9 0.861 | 0.774 | 0.884 | 0.925 | 0.847 | 0.715 | 0.884 | 0.924
Coding 0.849 | 0.671 | 0.845 | 0.938 | 0.850 | 0.651 | 0.892 | 0.908
Non-Coding | 0.876 | 0.855 | 0.911 | 0.901 | 0.839 | 0.753 | 0.869 | 0.930
All Coding Non-Coding
1.0
0.8
0.6
3 & &
a = a 0.4
0.2 CADD =0.92 0.2 CADD = 0.91 0.2 CADD =0.92
FATHMM-MKL = 0.85 FATHMM-MKL = 0.86 FATHMM-MKL = 0.86
PhD-SNPg = 0.92 PhD-SNPg = 0.91 PhD-SNPg = 0.93
0.0 | | | | | 0.0 | | | | | 0.0 | | |
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 1.0
FPR FPR FPR
Capiriotti and Fariselli. (2017) Nucleic Acids Res. PMID: 28482034.




Blind testing




CAGI experiments

The Critical Assessment of Genome Interpretation is a community experiment to
objectively assess computational methods for predicting the phenotypic impacts of
genomic variation.

Moot v . smes

& Overview
» CAGI Presentations
& Challenges
 Bipolar exomes
® Crohn's exomes
3 eQTL causal SNPs
@ Hopkins clinical panel
& NAGLU
& NPM-ALK
® PGP
& Pyruvate kinase

3 SickKids clinical
genomes

& SUMO ligase
& Warfarin exomes

2 Conference

Home Data Use Agreement

Welcome to the CAGI experiment!
The CAGI 4 Conference

The Fourth Critical Assessment of Genome Interpretation (CAGI 4) prediction season has closed. Eleven
challenges were released beginning on 3 August 2015, and the final challenge closed on 1 February 2016.
Independent assessment of the predictions has been completed.

The CAGI 4 Conference was held 25-27 March 2016 in Genentech Hall on the UCSF Mission Bay campus in
San Francisco, California. Conference presentations (remixable slides and video) are provided on the CAGI 4
conference program page and also on each challenge page.

Please distribute this information widely and follow our Twitter feed @CAGInews and the web site for
updates. For more information on the CAGI experiment, see the Overview.

CAGI Lead Scientist or Postdoctoral Researcher position open!

Take the lead of the CAGI experiment! We are searching for a CAGI Lead Scientist or Postdoctoral
Researcher to join us in early 2016. Roger Hoskins will lead the CAGI 4 experiment to its completion, but he
is unable to continue in the role beyond mid-2016. He will overlap with the new CAGI leader to ensure a
seamless transition. Job descriptions posted at http://compbio.berkeley.edu/jobs

https://genomeinterpretation.org/



The NAGLU challenge

NAGLU is a lysosomal glycohydrolyase which deficiency causes a rare disorder
referred as Sanfilippo B disease

Challenge: Predict the effect of the 165 variants on NAGLU enzymatic activity.

The submitted prediction should be a numeric value ranging from 0 (no activity) to 1
(wild-type level of activity).



A posteriori evaluation

An evaluation of the performance shows that SNPs&GO reaches similar accuracy
than the best method (MutPred?)

Method Q2 AUC MC RMSE FPearson FSpearman | FKendallTau
MutPred2 0.780 0.850 0.565 0.30 0.595 0.619 0.443
SNPs&GO 0.800 0.854 0.603 0.33 0.575 0.616 0.445

SNPs&GO0° 0.750 0.749 0.499 0.46 0.477 0.495 0.409
A 10 B 1.0 C 10
SNPs&GO SNPs&GO SNPs&GO
MutPred2 MutPred2 v MUutPred2
0.8 - 0.8 0.8
o
s
g 0.6 ﬂc{\ £ 0.6 0.6
& "N\ 3 g
8 2 <
< 0.4 Y 0.4 0.4
£
2
0.2 0.2 0.2+
0.0 T T T T 0.0 T T T T 0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Threshold Threshold Threshold



Conclusions

- Evolutionary information is an important feature for the prediction of deleterious variants.
The pathogenic variants tend to occur in conserved protein sites.

- Structural information encoded through the relative solvent accessibility and the structure
environment improves the predictions of pathogenic variants.

- The implementation of meta-prediction based approach allows to select highly-accurate
predictions.

« Nucleotide conservation is an important feature to predict the impact of SNVs also in
noncoding regions.
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Hybrid method structure

Hybrid Method is based on a decision tree with SVM-Sequence coupled to
SVM-Profile. Tested on more than 21,000 variants our method reaches 74%
of accuracy and 0.46 correlation coefficient.
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Classification results

SVM-Sequence is more accurate in the prediction of disease related mutations and
SVM-Profile is more accurate in the prediction of neutral polymorphism.
Both methods have the same Q2 level.

Q2 P[D] | Q[D] | PIN] | QIN] C
SVM-Sequence | 0.70 | 0.71 084 | 065 | 046 | 0.34
SVM-Profile 0.70 | 0.74 | 049 | 068 | 0.86 | 0.39
HybridMeth 0.74 | 080 | 0.76 | 0.65 | 0.70 | 0.46

D = Disease related N = Neutral

The Hybrid Method have higher accuracy than the previous two methods
iIncreasing the accuracy up to 74% and the correlation coefficient up to 0.46.

http://snps.biofold.org/phd-snp
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Gene Ontology

The Gene Ontology project is a major bioinformatics e —
initiative with the aim of standardizing the

representation of gene and gene product attributes “E"ithe Gene On tOlOgy
across species and databases. The project provides —
a controlled vocabulary of terms for describing gene http://wnaw.geneontology.org/

product characteristics and gene product
annotation data.

The ontology is represented by a direct acyclic graph covers three domains;
e cellular component, the parts of a cell or its extracellular environment;

e molecular function, the elemental activities of a gene product at the molecular level, such as
binding or catalysis

e biological process, operations or sets of molecular events with a defined beginning and end,
pertinent to the functioning of integrated living units: cells,tissues, organs and organisms.
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The P16 challenge

CDKNZ2A is the most common, high penetrance, susceptibility gene identified to
date in familial malignant melanoma. p16/NK4A is one of the two oncosuppressor
which promotes cell cycle arrest by inhibiting cyclin dependent kinase (CDK4/6).

Challenge: Evaluate how different variants of p16 protein impact its ability to block
cell proliferation.

Provide a number between 50% that represent the normal proliferation rate of
control cells and 100% the maximum proliferation rate in case cells.



Prediction calibration

The calibration refers to the correspondence between the probabilistic output of the
method and the observed fraction of positive cases.

On ~2,000 newly annotated variants PhD-SNP9 and CADD among the most accurate
and calibrated methods with AUC > 0.96 and Brier Score < 0.07. Nevertheless CADD
output needs to be transformed to be calibrated.
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SNPs&GO prediction

Proliferation rates predicted using the output of SNPs&GO without any optimization.

Variant | Prediction Real A %YWT | %MUT
G23R 0.932 0.918 | 0.014 84 0
G23S 0.923 0.693 | 0.230 84 1
G23V 0.940 0.901 0.039 84 0
G23A 0.904 0.537 | 0.367 84 2
G23C 0.946 0.866 | 0.080 84 0
G35E 0.590 0.600 | 0.010 12 14
G35W 0.841 0.862 | 0.021 12 0
G35R 0.618 0.537 | 0.081 12 4
L65P 0.878 0.664 | 0.214 15 1
L94P 0.979 0.939 | 0.040 56 0




P16 predictions

SNPs&GO resulted among the best methods for predicting the impact of P16INK4A

variants on cell proliferation.

Capiriotti et al. (2017) Human Mutations. PMID: 28102005.

Method Q2 AUC MC RMSE IPearson F'Spearman | FKendallTau
SPARK-LAB 0.900 0.920 0.816 0.30 0.595 0.619 0.443
SNPs&GO 0.700 0.880 0.500 0.33 0.575 0.616 0.445
DrCancer 0.600 0.840 0.333 0.46 0.477 0.495 0.409
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PhD-SNPg

Variations in regulatory regions can perturb gene networks changing the topology
or the edge weight of the biological network
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PhD-SNP9 implements a gradient-boosting algorithms that can run relying only on web resources

http://snps.biofold.org/phd-snpg
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