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Presentation outline

e Human genome project:
Sequencing, assembly, international consortiums

e Genetic variants:
Variant databases and annotation

e Machine learning methods for variant interpretation:
machine learning algorithms, prediction assessment

e Variations in cancer:
Cancer data resources, gene prioritization

e Conclusions and future directions



Human genome race

The first draft of the human genome was released in 2001.

The project was started 1990 and ended in 2003 and cost $3 billion
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Int. HGS Consortium (2001). Venter et al (2001).

Nature. 409: 860-921. : , Science. 291: 1304-1351.
Cracking the Genome: Inside the

Race to Unlock Human DNA.
by Kevin Davies



Sequencing method

Shotgun sequencing involves randomly breaking up DNA sequences into fragments
(reads) and then reassembling the sequence by looking for regions of overlap.
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The genome assembly

The assembly problem is to reconstruct as much of a genome as possible
given a collection of reads or read pairs.

e the orientation of each read is not known
e one must allow a certain amount of error
e the entire genome is not covered by the read data

Different algorithms were developed for optimizing the genome
assembly. An important contribution was given by Eugene Myers
who significantly contributed to the determination of the Human,

Mouse and Drosophila genomes

Myers (2016). Information Technology. 58: 126—132



Some numbers

e Size: ~3.23 Billon bases
e 19,000-20,000 protein-coding genes

e Protein-coding sequences account ~1.5% of the genome, remaining part is
associated with introns, non-coding, RNA molecules, regulatory DNA and
sequences for which as yet no function has been determined.

e Differences among individuals on the order of ~0.1% while the differences with
with chimpanzee is ~4%



Sequencing cost

During the last few years the sequencing cost of the human genome
decreased significantly
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Cumulative Number of Human Genomes

Big Data in biomedicine

International consortiums generated a huge amount of sequencing data

from human and genomes from many organisms
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International consortiums

large-scale sequencing projects of the human genome

HapMap Project (2002-2009)
Hapy "*"ﬁgﬁ" International HapMap Project
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Single Nucleotide Variants

Single Nucleotide Variants (SNVs)

is a DNA sequence variation occurring when a single nucleotide A, T, C, or G in the

genome differs between members of the species.

It is used to refer to Polymorphisms when the population frequency is = 1%

SNVs occur at any position and can be
classified on the base of their locations.

Coding SNVs can be subdivided into two
groups:

Synonymous: when single base substitutions do
not cause a change in the resultant amino acid

Non-synonymous or Single Amino Acid Variants
(SAVs): when single base substitutions cause a
change in the resultant amino acid.
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1000 Genomes

The 1000 Genomes Project aims to create the largest public catalogue of
numan variations and genotype data. Last versione released the genotype
of ~2,500 individuals.

Table 1 | Variants discovered by project, type, population and novelty

a Summary of project data including combined exon populations

Low coverage Trios

Exon Union across

Statistic CEU YRI CHB+JPT Total CEU YRI Total (total) projects
Samples 60 59 60 179 3 3 6 697 742
Total raw bases (Gb) 1,402 874 596 2,872 560 615 1,175 845 4,892
Total mapped bases (Gb) 817 596 468 1,881 369 342 711 56 2,648
Mean mapped depth (X) 4.62 3.42 2.65 3.56 43.14 40.05 41.60 55.92 NA
Bases accessed (% of genome) 243 Gb 2.39 Gb 241 Gb 242 Gb 2.26 Gb 2.21 Gb 224Gb 1.4 Mb NA

(86%) (85%) (85%) (86.0%) (79%) (78%) (79%)

No. of SNPs (% novel) 7943827 10938130 6,273,441 14894361 3,646,764 4502439 5907699 12,758 15,275,256
(339%) (479) (28%) (RAZ) (11%) (23%) (2497) (ZQ%) (BB %)
Mean variant SNP sites per individual 2918623 3,335,795 2,810,573 3,019909 2,741,276 3,261,036 3,001,156 763 NA
No. of indels (% novel) 728,075 941,567 666,639 1,330,158 411,611 502,462 682,148 96 1,480,877
(39%) (52%) (39%) (57%) (25%) (37%) 38%)  (74%) (57%)
Mean variant indel sites per individual 354,767 383,200 347,400 361,669 322,078 382,869 352,474 3 NA
No. of deletions (% novel) ND ND ND 15,893 6,593 8,129 11,248 ND 22,025
(60%) (41%) (50%) (51%) (61%)
No. of genotyped deletions (% novel) ND ND ND 10,742 ND ND 6,317 ND 13,826
(57%) (48%) (58%)
No. of duplications (% novel) 259 320 280 407 187 192 256 ND 501
(90%) (90%) (91%) (89%) (93%) (91%) (92%) (89%)
No. of mobile element insertions (% novel) 3,202 3,105 1,952 4775 1,397 1,846 2,531 ND 5,370
(79%) (84%) (76%) (86%) (68%) (78%) (78%) (87%)
No. of novel sequence insertions (% novel) ND ND ND ND 111 66 174 ND 174
(96%) (86%) (93%) (93%)

1000 Genomes Project Consortium (2010). Nature. 467: 1061-1073.




SNVs and

Single Nucleotide Variants (SNVs) are
the most common type of genetic
variations in human accounting for more
than 90% of sequence differences (1000
Genome Project Consortium, 2012).
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SNVs can also be responsible of genetic
diseases (Ng and Henikoff, 2002; Bell,
2004).
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SNVs and SAVs databases

dbSNP mar 2018) @ NCBI

http://www.ncbi.nlm.nih.gov/snp

SwissVar (Oct 2018) @ ExPASy
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Single Nucleotide Variants

Homo sapiens 113,862,023
Gallus gallus 15,104,956
Zea mays 14,672,946

Single Amino acid Variants

Homo sapiens /76,608
Disease 29,529
Polymorphisms 39,779

Oct 2018
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Precision Medicine

The analysis of genomic data from healthy individuals and patients can be used to
develop better diagnostic and personalized treatment strategies
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Personalized medicine

Direct to consumers company are performing genotype test on markers associated
to genetic traits, and soon the full genome sequencing will cost ~$1,000.

The future bioinformatics challenges
for personalized medicine will be:

1. Processing Large-Scale Robust
Genomic Data

2. Interpretation of the Functional
Effect and the Impact of Genomic
Variation

3. Integrating Systems and Data to
Capture Complexity

4. Making it all clinically relevant

Pharmaco- Personal
Genomics Genomics

Personalized

Medicine

Medicine

Fernald GH, et al (2011). Bioinformatics. 27: 1741-1748.



Variant Interpretation




Sequence, Structure & Function

Genomic variants in sequence motifs could affect protein function.
Mutation S362A of P53 affect the interaction with hydrolase USP7 and the
deubiquitination of the protein.

r S362
- __—_—_—
Transcription Interaction Interaction Interaction Interaction
activation with WWOX with SH3  with DNA with USP7

Nonsynonymous variants responsible
for protein structural changes and
cause loss of stability of the folded
protein.

Mutation R411L removes the salt
bridge stabilizing the structure of the
IVD dehydrogenase.
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Sequence profile

The protein sequence profile is calculated running BLAST on the UniRef90 dataset and
selecting only the hits with e-value < 10-°.

The frequency distributions of the wild-type residues for disease-related and neutral variants
are significantly different (KS p-value=0).
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Capriotti et al (2012). Briefings in Bioinformatics. 13; 495-512.



Machine learning

* Computational approach to build models based on the analysis of
empirical data.

e Machine learning algorithms are suitable to address problems for which
analytic solution does not exists and large amount of data are available.

* They are implemented selecting a representative set of data that are used
In a training step and then validated on a test set with data “not seen”
during the training.

* Most popular machine learning approaches are in computational biology
are Neural Networks, Support Vector Machines and Random Forest.



Variant interpretation

Usually based learning algorithm which takes in input features
associated to the variants and returns a probability for the variant to be
Pathogenic or Benign

Machine Learning

.............................................................. (Pategeric |
Input Data Output T
Information (+ Answers) Optimum Model l

Algorithms + Techniques
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SNPs&GO input features

Sequence information is encoded in 2 vectors
each one composed by 20 elements. The first
vector encodes for the mutation and the
second one for the sequence environment

Protein sequence profile information derived
from a multiple sequence alignment. It is
encoded in a 5 elements vector corresponding
to different features general and local features

The GO information are encoded in a 2 elements
vector corresponding to the number unique of
GO terms associated to the protein sequences
and the sum of the logarithm of the total number
of disease-related and neutral variants for each
GO term.



SNPs&GO performance

SNPs&GO results in better performance with respect to previously developed methods.
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Method Q2 | P[D] | QD] | P[N] | QIN] C PM
PolyPhen 071 | 0,76 | 0,75 | 0,63 | 0,64 | 0,39 58
SIFT 0,76 | 0,75 | 0,76 | 0,77 | 0,75 | 0,52 03

PANTHER 0,74 0,77 0,73 0,71 0,76 0,48 /6
SNPs&GO 0.82 0.83 0.78 0.80 0.85 0.63 100

D = Disease related N = Neutral DB= 33672 nsSNVs

Calabrese et al. (2009) Human Mutation 30, 1237-1244.



Structure environment

There is a significant difference (KS p-value = 2.8x10-71) between the distributions of
the relative Accessible Solvent Area for disease-related and neutral variants. Their

mean values are respectively 20.6 and 35.7.
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Capriotti and Altman. (2011) BMC Bioinformatics.12 (Suppl 4); S3.



The structure-based method

The method takes in to input 4 types of information encoded in a 48 elements vector.
The input features are: mutation data; structure environment, sequence profile and
functional score based on GO terms.

Mutation (Mut) Structure Environment (3D) Profile (Prof) | PANTHER | LGO (F)
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Sequence vs Structure

The structure-based method results in better accuracy with respect to the sequence-
based one. Structure based prediction are 3% more accurate and correlation

coefficient increases of 0.06. If 10% of FP are accepted the TPR increases of 7%.

Q2 P[D] S[D] PI[N] S[N] C AUC

SNPs&GO 0.82 0.81 0.83 0.82 0.81 0.64 0.89

SNPs&GOs3d 0.85 0.84 0.87 0.86 0.83 0.70 0.92
A 10

0.8

0.6

TPR

0.4

0.2 0.2

SNPs&GOs3d

o SNPS&GO | = = = = &) DB
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http://snps.biofold.org/snps-and-go



http://bioinfo.uib.es/~emidio/cgi-bin/DrCancer

Prediction example

Damaging missing Cys-Cys interaction in the Glycosylasparaginase. The mutation
p.Cys163Ser results in the loss of the disulfide bridge between Cys163 and Cys179.
This SAP is responsible for Aspartylglucosaminuria.
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Whole-genome predictions

Most of the genetic variants occur in non-coding region that represents >98%
of the whole genome.
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Predict the effect of SNVs in non-coding region is a challenging task because
conservation is more difficult to estimate.

Seqguence alignment is more complicated for sequences from non-coding regions.



PhyloP100 score

Conservation analysis based on the pre-calculated score available at the UCSC
revealed a significant difference between the distribution of the PhyloP100

scores in Pathogenic and Benign SNVs.

PhyloP100
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PhyloP: Pollard et al,, Genome Research 2010



PhD-SNP¢

PhD-SNPgis a simple method that takes in input 35 sequence-based features
from a window of 5 nucleotides around the mutated position.

Sequence PhyloP
5 A C G T N 7 100
T 0 0 0 1 0 -0.6 | 0.9
C 0 1 0 0 0 1.0 1 0.0
G-A|| -1 0 1 0 0 1.0
T 0 0 0 1 0
A 1 0 0 0 0
3’ 25-element " 10-element

Gradient
Boosting

[ Probability]

http://snps.biofold.org/phd-snpg/



http://snps.biofold.org/phd-snpg/

set of 1,408 variants recently annotated.

Benchmarking

PhD-SNP9g has been tested in cross-validation on a set of 35,802 SNVs and on a blind

Q2 TNR NPV TPR PPV MCC F1 AUC
PhD-SNPs9 0.861 | 0.774 | 0.884 | 0.925 | 0.847 | 0.715 | 0.884 | 0.924
Coding 0.849 | 0.671 | 0.845 | 0.938 | 0.850 | 0.651 | 0.892 | 0.908
Non-Coding | 0.876 | 0.855 | 0.911 | 0.901 0.839 | 0.753 | 0.869 | 0.930
All Coding Non-Coding
1.0
0.8
0.6
& & &
- - = 0.4
CADD =0.92 CADD = 0.91 CADD =0.92
0.2 FATHMM-MKL = 0.85 0-2 FATHMM-MKL = 0.86 0.2 FATHMM-MKL = 0.86
PhD-SNPg = 0.92 PhD-SNPg = 0.91 PhD-SNPg = 0.93
0.0 | | | | | 0.0 | | | | | 0.0 | | |
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 1.0
FPR FPR FPR
Capiriotti and Fariselli. (2017) Nucleic Acids Res. PMID: 28482034.




Blind Validation




CAGI experiments

The Critical Assessment of Genome Interpretation is a community experiment to
objectively assess computational methods for predicting the phenotypic impacts of
genomic variation.

Mo s - smer

Data Use Agreement

2 Overview
2 CAGI Presentations

® Challenges
2 Bipolar exomes

® Crohn's exomes

3 eQTL causal SNPs

@ Hopkins clinical panel
& NAGLU

& NPM-ALK

® PGP

& Pyruvate kinase

3 SickKids clinical
genomes

& SUMO ligase
3 Warfarin exomes

2 Conference

Welcome to the CAGI experiment!
The CAGI 4 Conference

The Fourth Critical Assessment of Genome Interpretation (CAGI 4) prediction season has closed. Eleven
challenges were released beginning on 3 August 2015, and the final challenge closed on 1 February 2016.
Independent assessment of the predictions has been completed.

The CAGI 4 Conference was held 25-27 March 2016 in Genentech Hall on the UCSF Mission Bay campus in
San Francisco, California. Conference presentations (remixable slides and video) are provided on the CAGI 4
conference program page and also on each challenge page.

Please distribute this information widely and follow our Twitter feed @CAGInews and the web site for
updates. For more information on the CAGI experiment, see the Overview.

CAGI Lead Scientist or Postdoctoral Researcher position open!

Take the lead of the CAGI experiment! We are searching for a CAGI Lead Scientist or Postdoctoral
Researcher to join us in early 2016. Roger Hoskins will lead the CAGI 4 experiment to its completion, but he
is unable to continue in the role beyond mid-2016. He will overlap with the new CAGI leader to ensure a
seamless transition. Job descriptions posted at http://compbio.berkeley.edu/jobs

https://genomeinterpretation.org/



The P16 challenge

CDKNZ2A is the most common, high penetrance, susceptibility gene identified to
date in familial malignant melanoma. p16/NK4A is one of the two oncosuppressor
which promotes cell cycle arrest by inhibiting cyclin dependent kinase (CDK4/6).

Challenge: Evaluate how different variants of p16 protein impact its ability to block
cell proliferation.

Provide a number between 50% that represent the normal proliferation rate of
control cells and 100% the maximum proliferation rate in case cells.



SNPs&GO prediction

Proliferation rates predicted using the output of SNPs&GO without any optimization.

Variant | Prediction Real A %YWT | %MUT
G23R 0.932 0.918 | 0.014 84 0
G23S 0.923 0.693 | 0.230 84 1
G23V 0.940 0.901 0.039 84 0
G23A 0.904 0.537 | 0.367 84 2
G23C 0.946 0.866 | 0.080 84 0
G35E 0.590 0.600 | 0.010 12 14
G35W 0.841 0.862 | 0.021 12 0
G35R 0.618 0.537 | 0.081 12 4

L65P 0.878 0.664 | 0.214 15 1
L94P 0.979 0.939 | 0.040 56 0




P16 predictions

SNPs&GO resulted among the best methods for predicting the impact of P16INK4A

variants on cell proliferation.

Capiriotti et al. (2017) Human Mutations. PMID: 28102005.

Method Q2 AUC MC RMSE FPearson F'Spearman | FKendallTau
SPARK-LAB 0.900 0.920 0.816 0.30 0.595 0.619 0.443
SNPs&GO 0.700 0.880 0.500 0.33 0.575 0.616 0.445
DrCancer 0.600 0.840 0.333 0.46 0477 0.495 0.409
SPARK-LAB SNPs&GO DrCancer
B 100 C 100
r=0.83 r=0.66 r=0.57
r'=0.84 r'=0.81 . r=0.75
20 .o 20 .o
80 80
70 | ° 70 | L
60 . 60 .
. (® G23a . (®a23a
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The NAGLU challenge

NAGLU is a lysosomal glycohydrolyase which deficiency causes a rare disorder
referred as Sanfilippo B disease

Challenge: Predict the effect of the 165 variants on NAGLU enzymatic activity.

The submitted prediction should be a numeric value ranging from 0 (no activity) to 1
(wild-type level of activity).



A posteriori evaluation

| performed a posteriori evaluation of the performance based on my version of the
predictor and found that SNPs&GO reaches similar accuracy than the best method

(MutPred?2)

Method Q2 AUC MC RMSE FPearson FSpearman | FKendallTau
MutPred2 0.780 0.850 0.565 0.30 0.595 0.619 0.443
SNPs&GO 0.800 0.854 0.603 0.33 0.575 0.616 0.445

SNPs&GO0° 0.750 0.749 0.499 0.46 0.477 0.495 0.409
A 10 B 10 C 10
SNPs&GO SNPs&GO SNPs&GO
MutPred2 MutPred2 e MUtPred2
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Variations in Cancer



Hallmarks of cancer

The six hallmarks of cancer - distinctive and complementary capabilities that
enable tumor growth and metastatic dissemination.

Sustaining proliferative
signaling

Resisting Evading growth
cell death SUpPpPressors

Inducing Activating invasion
angiogenesis and metastasis

Enabling replicative
immortality

Hanahan and Weinberg (2011) Cell, 144:646



The complexity of cancer

Cancer is complex disorder characterized by high level of mutation rate.

Mutations can be classified in germline and somatic whether they are inherited
from parents or the result of error in DNA replication.

Another classification is between driver and passenger mutations whether they
provide selective advantage with respect to normal cells increasing their
proliferation rate or not.



Oncogene vs Suppressor

Oncogenes have highly recurrent mutations, tumor suppressors have sparse variants.

¥ = Missense mutation
A = Truncating mutation

: E .

N ABD s RBD B C2 . Holical R Kinase ' C N (i c
PIK3CA 1068 aa Substrate binding sites IDH1 44 aa

928 aa 213 aa

y¥y A s b R it Yy R , ‘T ¥
N T- d E1A-bindi C N 5 s CC C
P 10 g ST | JEiEtadigc N § s PR O, TS
RB1 VHL

Vogelstein et al. (2013) Science , 339:1546



Main challenges

Computational methods for cancer genome interpretation have been developed to
address the following issues:

e Detection of recurrent somatic mutations and cancer driver genes;
® Prediction of driver variants and their functional impact;
e Estimate the impact of multiple variants at network and pathway level;

¢ Differentiate subclonal populations and their variation pattern.



The TCGA data

The Cancer Genome Atlas Consortium

Genomic Data Commons (https://portal.gdc.cancer.gov/)
® 43 Projects
® 69 Primary sites

EABISNB;;;N;;?{:?TITUTE [Projects ¢ Exploration & Analysis £ Repository Q Quick Search  Manage Sets %) Login !Cartn i1 GDC Apps

Harmonized Cancer Datasets
Genomic Data Commons Data Portal

Get Started by Exploring:

[ Projects %% Exploration @ Analysis S Repository

Q e.g. BRAF, Breast, TCGA-BLCA, TCGA-A5-A0G2

Data Portal Summary Data Release 13.0 - September 27, 2018

PROJECTS

43 & 69 & 33,096

PRIMARY SITES CASES

FILES GENES MUTATIONS

[1358,002 £ 22,147 43,142,246




The ICGC data portal

The International Cancer Genome Consortium

e ~24000 cancer patients
® 84 cancer projects in 22 primary sites
e more than 77 million simple somatic mutations.

Cancer genomics data sets visualization, Data Release 27  sori 30t 2015
analysis and download.

Cancer projects 84

Cancer primary sites 22
20,487

Donor with molecular data in DCC

e.g. BRAF, KRAS G12D, DO35100, MU7870, FI998, apoptosis, Cancer Gene
Census, imatinib, GO:0016049 Total Donors 24,077

Simple somatic mutations 77,462,290

Advanced Search

ICGC (https://dcc.icgc.org/)



Mutational landscape

The distribution of somatic variants varies significantly across cancer types

Number of Somatic Mutations in Donor's Exomes Across Cancer Projects
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Driver vs Passenger

Number of recurrent mutations decrease exponentially.
On average a small fraction of variants is present in the majority of the samples.

Selecting mutations that are repeated at least twice we filter out ~98% mutations
and are still able to recover ~96% of the patients

100 1.0 1.0
Cancer Type Cancer Type
2 10_1 All Cancers All Cancers
) 0.8 - 0.8
g 0 0
S 102 - g 2
_% é 0.6 S 0.6
£ 1073 ° ©
b 5 c
S i na 5 0.4 5 0.4
e 107 - o ©
O L L.
§ 105 - 027 0-27
L
10°® ! | | 0.0 I I I I 0.0 ! ! ! ! !
0 10 20 30 40 50 0 10 20 30 40 50 10 10' 102 103 104 10°
Observation Filter for Somatic Mutations Observation Filter for Somatic Mutations Fraction of Somatic Mutations

Tian R, Basu M, Capriotti E.(2015) BMC Genomics. 16 (Suppl. 8): S7.




Sample purity

Impurity in the sample purity reduce the ability to detect variants

(a) 100% Tumor purity
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Raphael et al. (2014) Genome Medicine, 6:5



Clonal evolution

On average tumor samples have ~150 more rare missense variants and mutated genes
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Ding et al (2014). Nat. Rev Genetics.



Recurrent variations

Recurrent mutations
Recurrent mutations found in more Seq“e"ce"::"t samples M“‘aﬁ‘;”m”::m"
samples than expected are good i+ g R —
candidates for driver mutations. e T B |
; O
To identify such recurrent mutations, a 3 -
statistical test is performed which usually ? '

| ——{ Single gene test
collapses all the non-synonymous
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Passenger mutation e 3 L
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|dentification of recurrent mutations in Combinations of mutations
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Raphael et al. Genome Medicine 2014, 6:5



Mutation rates

The analysis of 1000 Genomes, The Cancer Genome Atlas (TCGA) normal
and tumor samples shows an increasing number of genes with rare
nonsynonymous SNVSs.

100

Cohort | oo 005 | PORM0OS
1000 Genomes 95% 9% N
TCGA Normal 92% 8% o
TCGA Tumor 82% 18%

40—

% of Mutated Genes

Tumor = Colon Adenocarcinoma
PDR = Gene Putative Defective Rate
Fraction of samples in which a gene has >1

20

-

PDR=0.05 PDR>0.05

nonsynonymous variant with MAF<0.5% 0



Gene prioritization

New method for cancer gene prioritization based on the comparison of the
mutation rates in tumor samples vs normal and 1000 Genomes samples.

1.0 120
Gene PDR[T] | PDR[B] | Score TP53
KRAS 0.436 0.009 (2.6 0.8 KRAS 100
TP53 0.441 0.011 63.7 PIK3CA
PIK3CA | 0291 | 0007 | 39.4 5 0.6 »
Q0.
BRAF 0.146 0.001 29.9 i 60
40
Colon Adenocarcinoma
PDRJ[T] = Putative Defective Rate Tumor 0.2 20
PDRI[B] = Putative Defective Rate Background COAD
Background = Max (Normal and 1000 Genomes) 0.0 ' ! 0

0.0 0.2 0.4 0.6 0.8 1.0
Background PDR

Tian R, Basu M, Capriotti E (2014). Bioinformatics. 30: i572-i578



Other Research Lines



Variants and networks

The simple one-variant one-phenotype model valid for many monogenic diseases
does not capture the complexity of polygenic traits and disorders.

Variant Detection Network Analysis Phenotype Evaluation

r ) Abnormal Cell

©-0-0 l’°*3*@
»,.‘H =) | @
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. O-0-0-O 5-¢

Normal Cell Growth

Capriotti E, Ozturk K, Carter H. (2018). WIREs Systems Biology and Medicine. Under review



Variants and drug response

Pharmacogenomics aims at understanding how genetic variants influence drug
efficacy and toxicity.

Pharmacokinetics variants: drug Pharmacodynamics variants have
undergoes to bioinactivation via metabolic an effect on the drug-receptor
pathway. When the functionality of the interactions and concentration.
pathway is compromised, a much higher These variations have a directly
concentrations of parent drug will impact on the dose-response
accumulate. relationships.
Warfarin and CYP2C9. Warfarin and VKORC1
[ Rwarfarin | s-Warforin |
|
( \CY;@ | Liver cell
4/—\|me | swarfarin |
1
\eicel ".\\-k Cl (} in

https://www.pharmgkb.org/


https://www.pharmgkb.org/

Conclusions

« The advances of the sequencing technology allowed to detect a huge amount of
genetic variants whose function is unknown.

» Variant interpretation is a challenging task that can be solved by machine learning
methods based on protein sequence, structure and function information.

« An important feature for variant interpretation is the sequence conservation.
Variants in conserved regions are more likely to be pathogenic.This observation is
valid also in noncoding regions.

- Statistical approaches for the analysis of genetic variations in cancer sample are
important for developing gene prioritisation methods.



Future directions

* Development of computational methods for integration of omics data from
different experimental techniques.

- Implement interoperable systems and software applications for storing and
sharing genomic data.

 Detect genetic variants at single cell level. Test the effect of mutations using
genome editing technique such as CRISPR-Cas9.

- Making all this information relevant at clinical level to improve health care system
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