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Abstract

Background: In recent years the number of human genetic variants deposited into the publicly available
databases has been increasing exponentially. The latest version of dbSNP, for example, contains ~50 million
validated Single Nucleotide Variants (SNVs). SNVs make up most of human variation and are often the primary
causes of disease. The non-synonymous SNVs (nsSNVs) result in single amino acid substitutions and may affect
protein function, often causing disease. Although several methods for the detection of nsSNV effects have already
been developed, the consistent increase in annotated data is offering the opportunity to improve prediction
accuracy.

Results: Here we present a new approach for the detection of disease-associated nsSNVs (Meta-SNP) that
integrates four existing methods: PANTHER, PhD-SNP, SIFT and SNAP. We first tested the accuracy of each method
using a dataset of 35,766 disease-annotated mutations from 8,667 proteins extracted from the SwissVar database.
The four methods reached overall accuracies of 64%-76% with a Matthew’s correlation coefficient (MCC) of 0.38-
0.53. We then used the outputs of these methods to develop a machine learning based approach that
discriminates between disease-associated and polymorphic variants (Meta-SNP). In testing, the combined method
reached 79% overall accuracy and 0.59 MCC, ~3% higher accuracy and ~0.05 higher correlation with respect to the
best-performing method. Moreover, for the hardest-to-define subset of nsSNVs, i.e. variants for which half of the
predictors disagreed with the other half, Meta-SNP attained 8% higher accuracy than the best predictor.

Conclusions: Here we find that the Meta-SNP algorithm achieves better performance than the best single
predictor. This result suggests that the methods used for the prediction of variant-disease associations are
orthogonal, encoding different biologically relevant relationships. Careful combination of predictions from various
resources is therefore a good strategy for the selection of high reliability predictions. Indeed, for the subset of
nsSNVs where all predictors were in agreement (46% of all nsSNVs in the set), our method reached 87% overall
accuracy and 0.73 MCC.

Introduction
The most common form of human genetic variation is
single nucleotide polymorphisms (SNVs) [1]. Trivially,
non-coding region SNVs are more common than coding.
However, fewer, percentage-wise, non-coding variants
have thus far been characterized as disease-causing than

coding, non-synonymous SNVs (nsSNVs; e.g. HGMD
[2]). This fact is likely the result of experimentally diffi-
cult and therefore limited exploration into the non-cod-
ing world. Whatever the reason, however, most of the
existing computational tools study the effects of nsSNVs
specifically [3-6].
Many human diseases are monogenic, i.e. caused by

damage to a single gene [7]. Identifying SNVs causative of
monogenic disease is fairly straightforward. These are
always functionally disruptive and consistently present in
the disease population, but less frequently in healthy
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controls [8]. Complex diseases, on the other hand, are gen-
erally caused by a combination of moderately deleterious
mutations in different genes; often leading to a disruption
of the broader functional networks involved. Any one of
these SNVs is unlikely to be significantly visible in the
overarching background of human variation [9,10].
In the last decade, several algorithms have been devel-

oped to predict disease-related and functionally deleter-
ious variants [11-21]. Methods that aim to identify
disease-associated nsSNVs (which cause single amino
acid substitutions in the protein sequence) are a different
set of tools from those that look for nsSNVs that disrupt
protein molecular function [11,17,21]. The latter focus
on a single protein, a hard enough task in itself, while the
former need to identify the mutation effect on the pheno-
type of an entire organism. One of the biggest challenges
facing the nsSNV-disease mapping methods is the collec-
tion of development/testing data sets; i.e. beyond mono-
genic disease mutations and coding variants found by
genome-wide association studies (GWAS), the experi-
mental identification of complex disease-associated
mutations is very subjective. The majority of the current
methods rely on the manually curated collections of dis-
ease-associated variants from OMIM [7], SwissVar [22],
and, more recently, the dbSNP [23] clinical SNV collec-
tions. Once the data sets are collected, all methods use
some combination of the affected protein sequence/
structure features and functional annotations to look for
patterns indicative of disease involvement.
The overlap in development data sets and features of

interest suggests that most methods should “pick up” simi-
lar patterns in the data. However, recent estimates [3]
show that different tools vary significantly in the predic-
tions they make, while each still attaining relatively high
levels of accuracy. Method orthogonality, i.e. each one
method getting a different set of variants right, may be
one explanation to this phenomenon.
Given the relative lack of new annotated data sets and

the high levels of accuracy already attained, moving the
field forward has been difficult. Newly developed methods
at best boast improved annotation speeds or incremental
gains in performance, often at cost of limited applicability.
In this study we aimed to take advantage of method ortho-
gonality to complement each tool’s predictions with those
of the other tools. The meta-predictor that we developed
(Meta-SNP) identifies disease-causing nsSNVs by coupling
some of the leading methodologies in prediction of
nsSNV-disease (PhD-SNP [16]) and nsSNV-function asso-
ciations (PANTHER [18], SIFT [17], SNAP [11]).

Methods
Dataset and benchmarking
Training and testing machine learning approaches require
appropriate representative set of reliably annotated data.

To develop a method for the detection of disease-asso-
ciated nsSNVs we needed a large set of well-annotated dis-
ease-related (positive cases) and polymorphic (negative
cases) variants. Although for Mendelian disease the anno-
tation of disease-causing variations is reliable, the selection
of polymorphic nsSNVs is still a problem. In this work, we
consider as disease and polymorphic variants those anno-
tated in SwissVar [22] as Disease and Polymorphism,
respectively. Note that the SwissVar Polymorphisms may
(and probably do) still carry undiscovered disease
associations.
Our training set is composed of disease-related and

polymorphism variants from the SwissVar database Octo-
ber 2009 release (SV-2009). All methods were also tested
on an independent set of protein variations from a newer
version of SwissVar (February 2012 release). The SV-2009
dataset consists of 35,766 nsSNVs from 8,667 proteins. To
build this set we (1) extracted from SwissVar all variants
that were not annotated as Unclassified and only those
whose annotations did not change between the 2009 and
2012 and (2) balanced the number of disease-associated
and polymorphic mutations by taking all disease variants
(17,883 variants) and randomly selecting an equal sized
sets of polymorphsims. The variants added to SwissVar
between 2009 and 2012 included 4,387 polymorphisms
and 486 disease-associated mutations (excluding variants
in proteins from SV-2009). Of these, the NSV-2012 data
set is a disease/polymorphism-balanced subset that con-
sists of 972 nsSNVs (all 486 disease variants and a ran-
domly selected set of 486 polymorphisms) from 577
proteins that were not found in SV-2009.
Both SV-2009 and NSV-2012 datasets were partitioned

into three subsets according to the agreement in predic-
tions returned by the four algorithms (see Prediction
methods and Supplementary Online Material, Table S1).
The Consensus subset consists of the variations for which
all four predictors returned identical predictions (46% of
SV-2009 and 42% of NSV-2012). The Tie subset is the
set of variants that were classified as disease-related and
polymorphic by equally many predictors, two for each
classification (14%/16%). The Majority is the subset of
nsSNVs where three predictors agreed in the judgment
and one disagreed (40%/42%).

Prediction methods
In this work we predicted the effect of nsSNVs using
PANTHER, PhD-SNP, SIFT and SNAP. Note that
PANTHER, SIFT, and SNAP annotate variants as disrup-
tive of protein function or equivalent to wild-type, while
PhD-SNP particularly recognizes disease-associated
substitutions.
PhD-SNP is a Support Vector Machines (SVMs) based

method trained to predict disease-associated nsSNVs
using sequence information. The methods takes as input
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the information about the mutation, such as its sequence
environment and profile at the mutated site, calculated by
BLASTing [24] it against the UniRef90 database [25]. For
each mutation, PhD-SNP returns an output score (ranged
0-1) that represents the probability of this nsSNV being
associated with disease. The method considers 0.5 to be
the threshold above which the nsSNVs are predicted to be
disease-associated.
The PANTHER algorithm is based on a library of Hid-

den Markov Models (HMMs) obtained from the multiple
sequence alignments of different protein families.
PANTHER predicts the effect of nsSNVs in a two-step
procedure. First, the affected protein is compared to all
HMMs in the library to find the HMM of the query pro-
tein family. Then, this HMM is used to calculate the
probability of the nsSNV disrupting the function of the
affected protein. Note that when PANTHER is not able
to map the affected protein to one of the families in its
library, no output is returned.
SIFT uses evolutionary information to make predictions

with regard to functional effects of nsSNVs. Our local
installation of SIFT used the UniRef90 database for the
necessary PSI-BLASTs. SIFT scores are normalized to
range 0-1, where any score >0.05 represents a neutral sub-
stitution, while mutations scoring <0.05 are functionally
deleterious.
SNAP is a neural network-based method that takes as

input the biochemical features of the given substitution
as well as predicted protein structural and functional fea-
tures to differentiate neutral and non-neutral variants.
The local installation of SNAP produces a raw score of
-100 to 100, where all predictions >0 are non-neutral and
<0 are neutral. Note the raw score is converted into a
reliability index for all web-based predictions.

Implementation of the Meta-SNP algorithm
We trained Meta-SNP, a random forest-based binary
classifier to discriminate between disease-related and
polymorphic non-synonymous SNVs. Meta-SNP takes as
input the output of the four predictors described above
as an eight-element feature vector composed of two
groups of four elements each. The first group is the set of
raw output scores of the variant predictions from
PANTHER, PhD-SNP, SIFT and SNAP. In case one of
the input methods does not return a prediction, we used
the method-defined default threshold for differentiating
neutrals and non-neutrals as input to Meta-SNP (SNAP
= 0, SIFT = 0.05, PhD-SNP = 0.5, PANTHER = 0.5).
The second group contains four elements extracted

from the PhD-SNP protein sequence profile: (1 and 2) fre-
quencies of the wild-type (Fwt) and mutant (Fmut) residues
in the mutated site, (3) the total number of sequences
aligned at the mutated site (Nal) and (4) the conservation
index (CI) [26]. Sequence profile information modulates

Meta-SNP predictions by the conservation of the mutated
position. This information is redundant across the four
component methods, so for Meta-SNP we used only one
version of the sequence profile - that from PhD-SNP.
Meta-SNP is a 100-tree RandomForest WEKA [27]

library implementation, trained on SV-2009 using 20-fold
cross-validation. The predictor outputs the probability
that a given nsSNV is disease-related, where scores >0.5
indicate that the given the variant is disease-causing.

Measures of performance
In all measures of performance (assuming that positives
indicate disease and negatives indicate polymorphisms),
TP (true positives) are correctly predicted disease-asso-
ciated variants, TN (true negatives) are correctly predicted
polymorphisms, FP (false positives) polymorphic variants
annotated as disease-causing, and FN (false negatives) are
disease-associated variants predicted to be polymorphic.
Predictor performance was evaluated using the following

metrics: positive and negative predicted values (res-
pectively PPV and NPV), true positive and negative
rates (respectively TPR and TNR), and overall accuracy
(Q2; Eqn. 1)

PPV =
TP

TP + FP
TPR =

TP

TP + FN

NPV =
TN

TN + FN
TNR =

TN

TN + FP

Q2 =
TP + TN

TP + FP + TN + FN

(1)

We also computed the Matthew’s correlation coefficient
MCC (Eqn. 2) as:

MCC(s) =
TP × TN − FP × FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2)

For each prediction, the binary classification (disease/
polymorphism) is made at the output threshold of 0.5.
Thus, if probability of disease classification, P(D), is >0.5
the mutation is predicted to be disease associated. If P(D)
≤0.5, the variant is predicted to be polymorphic. A reliabil-
ity index (RI) for all predictions is calculated as follows:

RI = 20 × abs
[
P(D) − 0.5

]
(3)

Thus, RI is ranged 0-10 for both negative (polymorphic)
and positive (disease-associated predictions). Varying RI
threshold for annotating variants allows trading off accu-
racy of predictions for the coverage of all disease-asso-
ciated and polymorphic variants in any given set.
We also report the area under the receiver operating

characteristic (ROC) curve (AUC), calculated by plotting
the True Positive Rate (positive sensitivity) as a function
of the False Positive Rate (1-negative sensitivity) at
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different probability thresholds of annotating a variant
as disease-associated or polymorphic. All the same
metrics (Eqn. 1 and 2) were used to calculate the pair-
wise similarities between predictors on the subsets of
variants predicted by both methods.

Results
Performances of four available methods
First we tested the accuracy of four stand-alone methods,
PANTHER, PhD-SNP, SIFT and SNAP, on a large data-
set of nsSNVs (SV-2009; Tables 1 and Additional File 1
Table S2). For this set, PANTHER and PhD-SNP are
most accurate, reaching ~75% overall accuracy (Eqn. 1)
and ~0.83 AUC (SIFT 70%/0.73, SNAP 64%/0.79 Q2/
AUC, respectively). Note that due to the lack of the
appropriate number of homologous sequences SIFT and
PANTHER did not return any predictions in 8% and 26%
of the cases, respectively. Also note that even though the
PhD-SNP results are obtained with a 20-fold cross-vali-
dation procedure, its performance estimates may be
biased as it was trained on the SV-2009 dataset. SNAP’s
lower Q2 value at high AUC suggests many false positive
predictions. This is an expected outcome, as not all func-
tionally deleterious mutations are disease associated
[8,28,29].

Scoring consensus predictions
We first analyzed the similarities between PANTHER,
PhD-SNP, SIFT and SNAP by calculating percentage
consensus predictions and the correlation between all
possible pairs of methods (Table 2). These values were
used to visualize the similarities between the methods
with two Unweighted Pair Group Method with Arith-
metic Mean (UPGMA) trees (Figure 1). PANTHER and
PhD-SNP algorithms returned the highest number of
common predictions (76%, MCC = 0.52). On the other
hand, PhD-SNP and SNAP had only 64% of the predic-
tions in common (correlation 0.36).
In addition, we evaluated the accuracy of the PhD-SNP

on Consensus, Majority and Tie subset of predictions (see
Datasets and Benchmarking). We expected a decrease in
level of accuracy from the set of variants where all meth-
ods agree in their predictions (Consensus) to those where

methods largely disagree (Tie). This hypothesis is con-
firmed (Table 3) with the overall accuracy and MCC of
PhD-SNP decreasing for these two from 87% to 61% and
0.73 to 0.16, respectively. An intermediate level of accu-
racy is attained on the Majority subset, where most of
the predictors agree (70% Q2 and 0.37 MCC).
To understand the difference in the performance

achieved on the three subsets (Consensus, Majority and
Tie) we evaluated the residue conservation in the mutated
positions using the protein sequence profile calculated by
PhD-SNP BLAST run (see Prediction methods). We com-
pared the distributions of the wild-type and mutant resi-
due frequencies (respectively Fwt and Fmut) in the mutated
positions for disease-related and polymorphic nsSNVs. In
addition, we analyzed the differences in the distributions
of the conservation index (CI). Our results show (Figure 3
and Table S3) increasing overlap between the distributions
of Fwt, Fmut and CI for disease-related and polymorphic
nsSNVs from the Consensus (Figure 3D,E,F) to the Major-
ity (Figure 3G,H,I) to the Tie (Figure 3J,K,L) subset. As
expected, an intermediate (average) distribution difference
is observed for the whole SV-2009 dataset (Figure 3A,B,C).

Performances of the meta-predictor
To improve the detection of deleterious variants, we
developed a meta-predictor (Meta-SNP) that combines
the outputs of PANTHER, PhD-SNP, SIFT and SNAP.
Meta-SNP uses single predictor outputs as in input; it
was trained and tested on the SV-2009 dataset using a
20-fold cross-validation procedure. Meta-SNP reaches
79% overall accuracy, 0.59 MCC and 0.87 AUC (Table 4).
While Meta-SNP outpredicts all other methods for all
data sets, an accuracy decrease from the Consensus to the
Majority to the Tie subset is still observed (87%, 75%,
69% Q2, respectively). The AUC for Meta-SNP is also
higher than that of the single methods for all of the
SV-2009 subsets (Figure 4).
Meta-SNP was additionally tested on NSV-2012, a dis-

ease/polymorphism balanced subset of nsSNVs added to
SwissVar from October 2009 to February 2012 and
belonging to proteins not found in SV-2009 (see Meth-
ods). The results on this dataset confirm that Meta-SNP
performs better than PhD-SNP and all other predictors
(see Figure 5A, Tables 4 and Additional File 1 Table S4).

Table 1 Component method performance

Method Q2 PPV TPR NPV TNR MCC AUC %DB

PANTHER 0.74 0.79 0.73 0.69 0.74 0.48 0.82 74

PhD-SNP 0.76 0.78 0.74 0.75 0.78 0.53 0.84 100

SIFT 0.70 0.74 0.64 0.68 0.76 0.41 0.73 92

SNAP 0.64 0.59 0.90 0.79 0.38 0.33 0.79 100

Q2=Overall accuracy, PPV and NPV=Positive and Negative Predicted Values,
TPR and TNR=True Positive and Negative Rates. MCC=Mathew’s correlation,
AUC=area under the (ROC) curve, %DB is the fraction of the SV-2009 dataset
for which a prediction is returned.

Table 2 Component method prediction “distance”

PANTHER PhD-SNP SIFT SNAP

PANTHER - 0.52 0.49 0.39

PhD-SNP 0.76 - 0.45 0.36

SIFT 0.74 0.73 - 0.38

SNAP 0.68 0.64 0.65 -

Similarities between pairs of predictors calculated on the SV-2009 dataset. The
fraction of consensus predictions is reported at the bottom of the diagonal
and the correlation up of the diagonal.
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Note Meta-SNP performance on the whole set of variants
added to SwissVar 2009-2012 is similar in overall accuracy
and AUC to that achieved on the disease/polymorphism
balanced NSV-2012 dataset, albeit, as expected, at a lower
PPV.
We also compared the performance of Meta-SNP to

that of CONDEL [30], another recently developed meta-
predictor. Meta-SNP is 4% more accurate (Q2) than CON-
DEL and achieves higher AUC (Table 4). As expected, the
Meta-SNP prediction accuracy still drops between the
Consensus, Majority and Tie subsets of NSV-2012 (Q2:
87% to 77% to 68%, AUC: 0.91 to 0.83 to 0.72, respectively,
see Table S4 and Figure 5B). Finally, the Meta-SNP relia-
bility index (see RI in Methods) helps selecting more accu-
rate predictions (Figure 5C); e.g., the NSV-2012 predictions

with RI≥5 are on average ~87% accurate, albeit at the cost
to recall (only~65% of the variants reach this score). Simi-
lar trends are observed for the Consensus, Majority and
Tie subsets (Additional File 1 Figure S1).

Discussion
The results presented in this work show that combining
predictors of nsSNV effects into a single unique meta-
predictor (Meta-SNP) improves the detection of disease-
causing variants. The Meta-SNP algorithm performs
slightly better (3% gain in accuracy, Q2) than PhD-SNP,
the best of the component methods for picking disease-
associations. Although this improvement can not be
considered very high, the advantage of Meta-SNP over a
single predictor is three-fold: (1) the use of four

Figure 1 Illustrating orthogonality of the component methods. Unweighted Pair Group Method with Arithmetic Mean (UPGMA) trees
visualize the similarity between PANTHER, PhD-SNP, SIFT and SNAP according to the overlap (panel A) and the correlation (panel B) between
the predictions in Table 2. The trees were drawn using the drawtree package [31].

Table 3 Performances of the PhD-SNP and Meta-SNP on training set

Dataset
(% of SV-2009)

Tool Q2 PPV TPR NPV TNR MCC AUC

SV-2009
(100%)

PhD-SNP 0.76 0.78 0.74 0.75 0.78 0.53 0.84

Meta-SNP 0.79 0.80 0.79 0.79 0.80 0.59 0.87

Consensus
(46%)

PhD-SNP 0.87 0.87 0.92 0.87 0.79 0.73 0.89

Meta-SNP 0.87 0.88 0.92 0.87 0.80 0.73 0.91

Majority
(40%)

PhD-SNP 0.70 0.67 0.56 0.72 0.80 0.37 0.77

Meta-SNP 0.75 0.72 0.64 0.76 0.82 0.47 0.82

Tie
(14%)

PhD-SNP 0.61 0.51 0.43 0.66 0.73 0.16 0.67

Meta-SNP 0.69 0.62 0.57 0.73 0.76 0.34 0.75

Q2=Overall accuracy, PPV and NPV=Positive and Negative Predicted Values, TPR and TNR=True Positive and Negative Rates. MCC=Mathew’s correlation, AUC=area
under the (ROC) curve.
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orthogonal methods makes Meta-SNP more robust to
handling new data sets, which may not follow the same
distribution as sets used for method development, (2)
Meta-SNP produces a single score, rather than four

separate scores, for the prediction of disease-related
nsSNVs and (3) Meta-SNP significantly outperforms all
component methods in classifying the mutations, which
are “border-line”, i.e. ones that are very difficult to

Figure 3 The overlap in sequence profile-based feature distributions is most visible for hardest to predict set of variants. Distributions of the
frequencies of the wild-type (Fwt) and mutant (Fm) residues and conservation indices (CI) for disease-related (red) and polymorphic (blue) nsSNVs were
computed from sequence profiles. The distributions are calculated on SV-2009 dataset (panels A, B, C) and its subsets: Consensus (panels D, E, F),
Majority (panels G, H, I) and Tie (panels J, K, L). Distributions of all profile features overlap most for Tie set and least for Consensus set.

Figure 2 Venn diagram of prediction overlaps. Overlap between the predictions returned by PANTHER (blue), PhD-SNP (red), SIFT (grey) and
SNAP (green), generated using Venny [32].
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classify as disease-associated or polymorphic with
current computational means.
As our observations (in Figure 3 and Additional File 1

Table S3) suggest, the overlap between distributions of
evolutionary features of disease and polymorphic variants,
especially for the Tie data set, may indicate either (1) the
lack of resolution in experimental data (i.e. polymorphisms
may actually be disease causing mutations, which have not
yet identified as such), (2) inaccuracies in building evolu-
tionary profiles (i.e. simple PSI-BLAST searches may not
be enough for all cases), or (3) our inability to differentiate
variants contributing to complex disease phenotypes (i.e.
when more than one variant is necessary for the disease
phenotype to become visible). In all of these cases, how-
ever, the computational algorithms that strongly rely on a
single evolutionary model are unable to differentiate
disease variants from polymorphisms. While the calcula-
tion of accurate alignments and profiles is key to the per-
formance of the predictive methods, we should also focus

on improving resolution of our experimental annotations
and available data collections. Additionally, understanding
the contribution of multiple correlated nsSNVs in one or
many proteins will enable discrimination between disease-
associated and polymorphic variants in unconserved sites.
In the mean time, combining many methods into a single
model, Meta-SNP, provides a new and significantly more
accurate way of assessing disease-association of human
variants, most often mis-predicted by single sequence-
based methods.

Conclusion
We developed a meta-predictor (Meta-SNP) that inte-
grates the PANTHER, PhD-SNP, SIFT and SNAP meth-
ods to predict disease-associated nsSNVs. To quantify the
increase in accuracy achieved by the combination of the
different methods we compared the performance of our
meta-predictor against that reached by the single methods.
Using a balanced set of 35,766 nsSNVs, the meta-predictor
attains ~3% higher accuracy, 0.03 higher AUC and 0.06
higher MCC with respect to PhD-SNP, the highest scoring
of all stand-alone predictors. Although this overall increase
in performance is not high, the performance is signifi-
cantly improved on the ~58% of the dataset where the
component predictors disagree (Majority and Tie subsets).
For these subsets the meta-predictor achieved ~6% higher
overall accuracy and 0.12 higher MCC with respect to
PhD-SNP. Meta-SNP is robust for new data as it reached
similar levels of accuracy on a set of 972 new nsSNVs in
proteins not included in the initial training dataset.

Abbreviations used
Single Nucleotide Polymorphism: SNP; single nucleotide
variant: SNV; nsSNV: non-synonymous single nucleotide
variant; Q2: overall accuracy; TPR and TNR: true positive
and negative rates; PPV and NPV: positive and negative

Table 4 Performances of the component methods and
Meta-SNP on testing set

Method Dataset Q2 PPV TPR NPV TNR MCC AUC %DB

PANTHER NSV-2012 0.74 0.81 0.71 0.68 0.78 0.49 0.75 75

PhD-SNP 0.77 0.78 0.77 0.77 0.78 0.55 0.84 100

SIFT 0.68 0.79 0.53 0.62 0.85 0.39 0.73 93

SNAP 0.64 0.59 0.91 0.80 0.38 0.34 0.79 100

CONDEL 0.75 0.78 0.70 0.72 0.81 0.51 0.82 100

Meta-SNP NSV-2012 0.79 0.79 0.80 0.80 0.79 0.59 0.86 100

Consensus 0.87 0.88 0.89 0.87 0.85 0.74 0.91 42

Majority 0.77 0.77 0.74 0.77 0.79 0.53 0.83 42

Tie 0.68 0.61 0.67 073 0.69 0.35 0.72 16

Q2=Overall accuracy, PPV and NPV=Positive and Negative Predicted Values,
TPR and TNR=True Positive and Negative Rates. MCC=Mathew’s correlation,
AUC=area under the (ROC) curve. %DB is the fraction of the NSV-2012 dataset
for which a prediction is returned.

Figure 4 Meta-SNP is more accurate in predicting disease-associated nsSNVs than all of its components for all data sets. (A) Receiver
operating characteristic (ROC) curves for all the prediction algorithms show that Meta-SNP is a better predictor than all of its component
methods. (B) Of all subsets of SV-2009, however, Meta-SNP performs best on the Consensus set, followed by Majority and Tie subsets.
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predictive values; MCC: Matthews Correlation Coefficient;
RI: Reliability Index.

Additional material

Additional file 1: Collective judgment predicts disease-associated
single nucleotide variants.Table S1. Composition of the datasets.
Table S2. Performance of the four methods on the SV-2009 subsets.
Table S3. Comparison of the distribution of sequence profile
features.Table S4. Performances of the four methods on the NSV-
2012 subsets.Fig. S1. Performance Meta-SNP as a function of the RI.
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