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Supplementary Material  

Performance Measures 

All quantitative measures used for the determination of a ranking between the submissions are listed: 

• Pearson CC (PCC): R function cor was used. Check the reference manual for details. 

• Pairwise Kendall CC (KCC): the R function cor was used. Check the reference manual for 

details. 

• Root Mean Square Error (RMSE): defined as 

(𝑝! − 𝑟!)!

𝑛  

where n is the number of mutations, p is the vector of predictions and r is the vector of 

experimental values. 

• Amount of predictions within standard deviations (PWSD): assuming a normal distribution 

for the experimental measures and the predicted values, p-value from the student's t-test for 

each mutation was used. Then, the number of p-value greater or equal than 0.05 was simply 

counted. Due to the difference in the standard deviations of the submissions, this index was 

even calculated using a fixed standard deviation of 10%. 

• Area Under the Curve (AUC): the performance function of the ROCR R package was used. 

Considering that the experimental measures e are real values (i.e. between 50 and 100), e were 

converted to classes. AUC for threshold 65, 75 and 90 were computed, according to data 

provider suggestions. 

 

Final Ranking 

The final ranking of a submission i was calculated using KCC, RMSE, AUC (threshold = 75) and 

PWSD (fixed standard deviation of 10%) where Ri  is the score based on which the final ranking was 



defined : 

( ) ( ) ( ) ( )iiiii PWSDRANK+AUCRANK+RMSERANK+KCCRANK=R  

The lower the number, the better the ranking of the submitter. These parameters were used because they 

provide different rankings. Statistical significance (with student t-test) of the ranking value was also 

computed in order to detect predictors with similar performances. The code used for assessment is 

available upon request to the corresponding author. 

 

Predictor method descriptions 

Participants used a wide range of approaches to generate predictions. A short description of each 

group’s method follows. 

 

Bromberg laboratory (submissions 2, 11, 17) 

Predictions of change in proliferation rate were made using SNAP (Screening for Non-Acceptable 

Polymorphisms) (Bromberg and Rost, 2007; Hecht et al., 2015), a neural network-based method for 

evaluation of functional effects of single amino acid substitutions. For each substitution, SNAP 

produces a score, computed as the mean prediction of ten neural nets trained on different folds of 

SNAP cross-validation. SNAP scores≤0 indicate no change in protein function (neutral), while SNAP 

scores>0 indicate functional effect (non-neutral). Although SNAP scores do not map directly to 

percentage change in proliferation rate, we have previously observed (Bromberg et al., 2013) that 

increased scores correlate with the severity of protein function change. Here, we used the scores as 

reference and made predictions of change in proliferation rate in three different ways described below. 

Note that for submission, standard deviation values were interpreted in a non-statistical fashion. 



A) For neutral predictions we report no change, proliferation rate=0.5. For non-neutral predictions 

SNAP scores≥60 indicated proliferation=1.0. SNAP scores in 0 to 60 range were normalized to 

represent the 0.5 to 1.0 range in proliferation rate. “Standard deviation” was pre-set at 0.05 

B) Predictions computed as in (A), but “standard deviation” was additionally computed from the 

scores of each of the ten SNAP-component networks 

C) Predictions estimated as: SNAP score ≥37 à 1.0 proliferation rate (severe effect), score ≥ 27 à 

0.8 (moderate effect), and score ≥ 16 à 0.6 (mild effect). “Standard deviation” was 0.01 for 

SNAP score≥60, 0.15 for score≤0, and the intermediates normalized within this range. 

 

BioFolD laboratory (submissions 5, 12, 18) 

SNPs&GO is a machine-learning tool implementing a Support Vector Machine algorithm (Calabrese et 

al., 2009). This method predicts the impact of nonsynonymous Single Nucleotide Variants (nsSNVs) 

taking in input ~50 features derived protein sequence/profile, calculated using BLAST algorithm 

(Altschul et al., 1997), and functional information encoded by the Gene Ontology terms. SNPs&GO 

returns in output a score that represents the probability of each nsSNV to be pathogenic. The last 

version of SNPs&GO (Capriotti et al., 2013; Capriotti and Altman, 2011), maintained by the BioFolD 

Unit (http://snps.biofold.org/snps-and-go), has been trained and tested on a set ~38,000 missense 

mutations extracted from SwissVar database (http://swissvar.expasy.org/). When tested in cross-

validation on this dataset, SNPs&GO achieved an overall accuracy of ~81% and an AUC of 0.88.  In 

previous independent benchmark tests SNPs&GO resulted among the best methods for predicting 

deleterious nsSNVs (Thusberg et al., 2011).   

 

 



Casadio laboratory (submission 3) 

The effect of the P16 variants has been predicted with SNPs&GO (Calabrese et al., 2009). All the 

variants in the training set (18 variations) and in the testing set (10 variations) are classified with 

SNPs&GO as correlated to disease. Each prediction of SNPs&GO is supplemented with a reliability 

index (RI) ranging from 0 to 10. The rate of proliferation for each variant has been set to be 

proportional to the RI (proliferation = 0.1*RI). On the 18 variation of the training set, the prediction 

resulted in a 0.76 Pearson's correlation index (p= 0.00023). 

 

Dunbrack laboratory (submission 7) 

For predicting the phenotypes of missense mutations, we have extensively explored the utility of 

information derived from biological assemblies that are present in protein crystal structures. For more 

than 50% of structures, the biological assembly is actually different from the asymmetric unit that 

crystallographers use to model the experimental crystallographic data. For structures with more than 

one protein in the biological assembly (whether the same sequence or different), we find the accessible 

surface area from biological assemblies provides a statistically significant improvement in prediction 

over the accessible surface area of monomers from protein crystal structures. We developed support 

vector machine models, trained on sequence-based features such as the difference between wildtype 

and mutant position-specific profile scores, conservation scores, and disorder predictions, and structural 

features such as the solvent-accessible surface area of the wildtype residue in all available biological 

assemblies of the target protein. We applied these support vector machines to several CAGI targets 

using both homo- and heterooligomeric structures and our program BAM (BioAssemblyModeler), 

which models the three-dimensional structures of proteins and protein complexes based on biological 

assemblies deposited in the PDB. In a small number of cases, the oligomeric structure changed a 

prediction from neutral to deleterious, because the surface area of the residue in the complex was 

different from the monomer of the same protein. In the case of p16, the experimental structure of the 



protein in a hetero-tetramer with CDK6 (PDB entry 1BI7) was used as a source of structural 

information. 

 

Gough laboratory (submissions 8, 14, 19) 

The Gough Group approach relies on Functional Annotation Through Hidden Markov Models 

(FATHMM) developed by Hashem Shihab (Shihab et al., 2013). 

The JackHMMER program from the HMMER3 package was ran to search for p16 homologous 

sequences within the UniRef database (Suzek et al., 2007) and generate a profile HMM from the 

multiple sequence alignment (Eddy, 1998). The probabilities of the wild-type and mutant amino-acids 

were extracted from the Dirichlet mixtures (Sjölander et al., 1996) describing the profile HMMs and 

used to determine the score for each missense variant:  

𝑠𝑐𝑜𝑟𝑒 =  ln 
𝑃!/(1 − 𝑃!)
𝑃!/(1 − 𝑃!)

 

where Pw and Pm are the respective wild-type and mutant probabilities in the match state.  

Negative scores indicate a deleterious effect, while positive scores indicate a favourable substitution. In 

order to match the submission format, scores were mapped such that a FATHMM score of zero 

corresponds to a negative control baseline (50% proliferation rate), while the remaining scores were 

mapped to the 0-100% range by adding or subtracting the proportionate percentage with regard to the 

maximum absolute FATHMM score obtained. 

 

Lichtarge laboratory (submissions  4) 

The Evolutionary Action (EA) measures the fitness effect of coding mutations, analytically. It models 

evolution as a mapping of genotypes (𝛾) to phenotypes (𝜑) in the fitness landscape via an evolutionary 

function (𝑓). Assuming genotypes are evolvable, 𝑓 should be differentiable, such that we can follow 



calculus to solve for the phenotype change due to a mutation: 𝑑𝜑 = 𝑓!(𝛾) ⋅ 𝑑𝛾, where 𝑑𝜑 is the action 

of the mutation 𝑑𝛾 on fitness and 𝑓!(𝛾) is the sensitivity of the mutated site to genotype changes. To 

compute the action of any mutation, 𝑓!(𝛾) is approximated with Evolutionary Trace (ET) ranks of 

importance (Lichtarge et al., 1996) and 𝑑𝛾 with inverse amino acid substitution log-odds. ET measures 

the importance of protein residues by accounting for the phylogenetic distances between homologous 

sequences (𝑑𝜑) that vary at a residue position (𝑑𝛾). The substitution log-odds are the tendencies of 

amino acids to substitute one another in proteins and reflect the differences in various physicochemical 

properties of amino acids. We calculated these log-odds using data from numerous homologous 

sequence pairs, accounting for the different functional importance of the amino acids. The computed 

fitness change 𝑑𝜑, or Evolutionary Action score, has been shown to correlate with experimental loss of 

function, clinical association, morbidity, and mortality (Katsonis and Lichtarge, 2014; Neskey et al., 

2015) . EA is available for non-profit use at http://mammoth.bcm.tmc.edu/EvolutionaryAction.  

 

Moult laboratory (submissions 9, 15, 20) 

We adopted an ensemble-like approach to predict relative cell growth rate for p16 mutations. For 

training, 30 cell proliferation assay (Ruas et al., 1999) data points for p16 missense mutations at one of 

25 positions were assembled from the literature and from the information provided with the challenge. 

We used six methods to analyze the function impact of the missense mutations: SNPs3D stability 

method (Yue and Moult, 2006), SNPs3D sequence profile method (Yue and Moult, 2006), Polyphen-2 

(Adzhubei et al., 2010), SIFT (Kumar et al., 2009), CHASM (Carter et al., 2009), and Condel 

(González-Pérez and López-Bigas, 2011).  Two multivariate linear models were used to fit the training 

data. The input are scores of the six methods, together with the total numbers of deleterious predictions 

and of neutral predictions. The output is the relative cell growth rate. The first linear model was fitted 

to the raw data, and had an intercept. The second model was adjusted so that 50% growth rate 



corresponded to the most neutral value for each method. Both models achieved an encouraging R-

squared (0.61 and 0.91 respectively), as well as a significant P-value. Regression residual errors at a 

similar level were achieved by leave-one-out cross validation. We then predicted the relative cell 

growth rate for variants in the challenge set using the two models. Because the cell lines used in the 

training set and the challenge set are different, and we observed relatively high cell growth rates in our 

predictions on the challenge set, we added a third submission in which predicted values are reduced by 

a factor of 1.47. We used the residual standard errors of the corresponding models as the confidence of 

the predictions. 

 

Yang & Zhou laboratory (submissions 10, 16, 21, 22) 

Mutation free energy: The mutation free energy (ddG) was calculated using ROSETTA3 (Rohl et al., 

2004) and DMUTANT (Zhou and Zhou, 2002) with default option, respectively. The option for 

ROSETTA3 is "-ddg::iterations 20 -ddg::dump_pdbs true -ddg::local_opt_only true -ddg::min_cst false 

-ddg::mean true -ddg::min false -ddg::sc_min_only true -in:file:fullatom". 

Evolution term (dPSSM): PSI-BLAST  (Altschul et al., 1997) was employed to obtain the PSSM for a 

given wild-type sequence. The evolution preference value was defined as the difference of the PSSM 

values between the wild-type residue and the mutated residue. 

SVM: The server was trained based on the above three features with 19 supplied experimental value by 

using libsvm (Chang and Lin, 2011). 

Results 

The submitted results include four groups of scaled data according to SVM output, dPSSM, ddG from 

ROSETTA3 and DMUTANTS. The Pearson correlation coefficients on the 10 test values are 0.83, -

0.45, -0.61 and 0.15, respectively. The negative signs in the middle were caused by a sign error. Further 

analysis shows that the correlation coefficient for SVM is 0.937 after removing one outlier point.  



 

Vihinen laboratory (submissions 6, 13) 

The group used two methods for the predictions, PON-P (Olatubosun et al., 2012) and PON-P2  

(Niroula et al., 2015). PON-P is a random forest-based metapredictor that utilizes results from four 

tolerance predictors (PhD-SNP, SIFT, PolyPhen-2, and SNAP) and a stability effect predictor (I-

Mutant). PON-P was trained and tested on VariBench datasets (Sasidharan Nair and Vihinen, 2013) 

according to the established guidelines (Vihinen 2012, 2013). By bootstrapping, totally 200 random 

forest (RF) predictors were trained. Reliability score was computed based on the results of the RF 

predictors and the variants with a high reliability score were classified as pathogenic or neutral and 

those with a lower reliability as unknown. 

PON-P2 (Niroula et al., 2015) was developed to avoid the bottlenecks caused by the third party 

software that drastically reduced the speed of PON-P. PON-P2 does not utilize data from any other 

predictors, instead has features describing evolutionary conservation, biochemical properties of amino 

acids, Gene Ontology (GO) annotations and functional and structural annotations of variant sites. The 

method was trained and tested with datasets from VariBench. 200 RF predictors were trained using 

bootstrap training data and the method classifies the variants into pathogenic, neutral and unknown, 

similar to PON-P. A probabilistic approach was used to integrate information for functional and 

structural annotations of the variant site together with the RF predictions to obtain the final prediction. 

 

 

 

 

 



Supplementary Figures 

 

Supplementary Figure 1. Predicted vs. experimental values for all 22 submissions. The predicted 

value (y-axis) is plotted against the experimental value (x-axis) for all variants in each of the 22 

submissions. 

 

 

  



Supplementary Tables 

 

Nucleotide variant Protein variant Proliferation rate 

c.68G>A p.Gly23Asp 1.00 
c.71G>A p.Arg24Gln 0.50 
c.104G>C p.Gly35Ala 0.80 
c.104G>T p.Gly35Val 0.90 
c.170C>T p.Ala57Val 0.50 
c.179C>T p.Ala60Val 0.90 

c.178_179delinsCG p.Ala60Arg 1.00 
c.192_194dup p.Leu65dup 1.00 
c.199G>C p.Gly67Arg 0.60 
c.206A>G p.Glu69Gly 0.70 
c.220G>T p.Asp74Tyr 1.00 
c.229A>C p.Thr77Pro 1.00 
c.239G>C p.Arg80Pro 0.90 
c.241C>A p.Pro81Thr 1.00 
c.259C>T p.Arg87Trp 0.70 
c.290T>G p.Leu97Arg 1.00 
c.296G>C p.Arg99Pro 1.00 
c.301G>T p.Gly101Trp 1.00 
c.340C>T p.Pro114Ser 0.90 

 

Supplementary Table 1. p16INK4a proliferation rate training set. Variants are shown by their 

nucleotide and protein identifier, followed by the relative proliferation level. Proliferation levels were 

rescaled between 0.5 (wildtype-like) and 1 (tumor-like). The standard deviation in this training set is in 

the range 0.05 - 0.15 and not shown. 

 

 

 

 

 

 

 



 

 G23S G23R G23C G23A G23V G35R G35W G35E L65P L94P 
S1 0 1 0 0 1 0 0 0 0 1 
S2 0 0 1 1 0 0 0 0 0 0 
S3 0 1 0 0 0 0 0 0 0 1 
S4 0 1 1 0 1 0 1 0 0 1 
S5 0 1 1 0 1 0 1 1 0 1 
S6 0 1 0 0 0 0 0 0 1 1 
S7 0 1 1 0 1 0 1 0 0 0 
S8 0 0 0 0 0 0 0 1 0 0 
S9 0 1 0 0 0 0 0 0 1 1 
S10 1 1 0 0 1 0 1 1 1 1 
S11 0 0 1 1 0 0 0 0 0 0 
S12 0 1 1 0 1 0 1 0 1 1 
S13 0 1 1 0 1 0 1 0 0 1 
S14 0 1 1 0 1 0 1 0 1 0 
S15 0 1 0 0 0 0 0 0 1 1 
S16 0 0 1 0 0 0 1 0 0 0 
S17 0 0 0 1 0 0 0 0 0 1 
S18 0 0 1 0 0 1 0 0 0 0 
S19 0 0 0 1 1 0 1 0 0 0 
S20 1 0 0 1 0 1 0 1 0 0 
S21 0 0 1 0 0 0 1 0 0 0 
S22 0 1 1 0 0 0 0 0 0 1 
Total 2 13 12 5 9 2 10 4 6 12 

 
Supplementary Table 2. Correct predictions per variant. Submissions are shown as rows, followed 

by the total count of correct predictions. Columns list each variant of the p16INK4a challenge and 

whether the corresponding submission correctly predicted (1, grey background) the effect according to 

PWSD10. Notice how certain substitutions at the same position were more difficult to predict. 

 

 

 

 

 

 

 

 

 

 



Submission Sens. 65 Spec. 65 B. Acc. 65 Sens. 75 Spec. 75 B. Acc. 75 Sens. 90 Spec. 90 B. Acc. 90 
S1 1 0 0.5 1 0 0.5 1 0.29 0.64 
S2 0.86 0.33 0.6 0.8 0.6 0.7 0.33 0.43 0.38 
S3 1 0 0.5 1 0 0.5 1 0.29 0.64 
S4 1 0 0.5 1 0 0.5 1 0.71 0.86 
S5 1 0.67 0.83 1 0.4 0.7 1 0.57 0.79 
S6 0.86 0 0.43 1 0.2 0.6 1 0.14 0.57 
S7 0.86 0 0.43 1 0.2 0.6 0 1 0.5 
S8 0 1 0.5 0 1 0.5 0 1 0.5 
S9 1 0 0.5 1 0.2 0.6 1 0.43 0.71 
S10 1 0.33 0.67 0.8 1 0.9 1 1 1 
S11 0.86 0.33 0.6 0.8 0.6 0.7 0.33 0.43 0.38 
S12 1 0 0.5 1 0.2 0.6 0.33 1 0.67 
S13 1 0 0.5 1 0 0.5 0.33 0.86 0.6 
S14 0.71 0 0.36 0.8 0.2 0.5 0 0.57 0.29 
S15 1 0 0.5 1 0.2 0.6 1 0.57 0.79 
S16 0.86 0 0.43 0.8 0 0.4 0 1 0.5 
S17 0.86 0.33 0.6 0.8 0.4 0.6 0.67 0.43 0.55 
S18 0.86 0.67 0.76 0.6 0.6 0.6 0 1 0.5 
S19 0.71 0.33 0.52 0.4 0.8 0.6 0 1 0.5 
S20 0.57 1 0.79 0 1 0.5 0 1 0.5 
S21 0.86 0 0.43 0.4 0 0.2 0 1 0.5 
S22 1 0 0.5 1 0 0.5 0.33 0.86 0.6 

 
Supplementary Table 3. Complementary performance indices. Complementary performance 

measures are reported for three different levels of binary classification (Thresholds for proliferation 

levels: 65, 75, and 90). For each threshold, three performance indices are reported: Sensitivity, 

Specificity and Balanced Accuracy. 
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