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Abstract

The CAGI‐5 pericentriolar material 1 (PCM1) challenge aimed to predict the

effect of 38 transgenic human missense mutations in the PCM1 protein implicated

in schizophrenia. Participants were provided with 16 benign variants (negative

controls), 10 hypomorphic, and 12 loss of function variants. Six groups participated

and were asked to predict the probability of effect and standard deviation associated

to each mutation. Here, we present the challenge assessment. Prediction perfor-

mance was evaluated using different measures to conclude in a final ranking which

highlights the strengths and weaknesses of each group. The results show a great

variety of predictions where some methods performed significantly better than

others. Benign variants played an important role as negative controls, highlighting
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predictors biased to identify disease phenotypes. The best predictor, Bromberg

lab, used a neural‐network‐based method able to discriminate between neutral and

non‐neutral single nucleotide polymorphisms. The CAGI‐5 PCM1 challenge allowed

us to evaluate the state of the art techniques for interpreting the effect of novel

variants for a difficult target protein.

K E YWORD S

bioinformatics tools, community challenge, critical assessment, effect prediction, missense

mutations, variant interpretation

1 | INTRODUCTION

Next‐generation DNA sequencing techniques produce new gene

and genome sequences every day, providing lots of genetic

information that is still unanalyzed (Niroula & Vihinen, 2016).

Furthermore, genetic analysis is performed more frequently to

study human diseases and consequently thousands of variants of

unknown significance (VUS) appear. The scientific community has

been making a big effort in developing computational tools that

allow a better interpretation of VUS and genomic information.

However, there is still plenty of work which has to be done to

improve the current state of the art. Critical Assessment of

Genome Interpretation (CAGI) experiment has been running

since 2010 with the aim to assess the state of the art of

computational methods which try to predict the phenotypic

impact of genomic variations.

Here, we present the assessment of the CAGI‐5 pericentriolar

material 1 (PCM1) challenge. Predictors were asked to predict the

pathogenicity of 38 transgenic human missense mutations in the

PCM1 gene. The PCM1 gene maps to the human chromosome 8p22.

The protein encoded by this gene is localized on centriolar satellites

and has an important role in the radial organization of microtubules

and the recruitment of proteins to the centrosome (Dammermann &

Merdes, 2002; Villumsen et al., 2013). PCM1 is recruited to the

centrosome to form a complex with the Bardet‐Biedl syndrome 4

(BBS4) and Disrupted in Schizophrenia‐1 (DISC1) proteins (Ansley

et al., 2003; Guo et al., 2006). Suppression of one of these proteins

could lead to neuronal migration defects (Kamiya et al., 2008). PCM1

is a large protein of 2,024 amino acids without known crystal

structures. Database annotations in UniProt (The UniProt Consor-

tium, 2017) show several coiled‐coil regions, while MobiDB (Piovesan

et al., 2018) predicts regions of intrinsic disorder accounting for

about 40% of the sequence. Linkage analysis has shown that the

PCM1 gene has a role in susceptibility to schizophrenia in humans

and is associated with orbitofrontal gray matter volumetric deficits

(Gurling et al., 2006). Indeed, a candidate pathogenic mutation on

this gene has been reported in an affected family (Kamiya et al.,

2008). The effects of PCM1 haploinsufficiency have been studied on

model animals, whereas affected mice show a significant reduction in

brain volume and behavioral alterations (Zoubovsky et al., 2015).

In addition to being risk factors for schizophrenia, several studies

have also implicated some PCM1 component in genetic susceptibility

to cancers and other mental diseases (Kamiya et al., 2008; Zoubovsky

et al., 2015).

Ventricular enlargement is one of the most consistent abnormal

structural brain findings in schizophrenia. A set of 38 transgenic human

PCM1 missense mutations implicated in schizophrenia were assayed in a

zebrafish model to determine their impact on the posterior ventricle area.

The CAGI challenge aims to predict whether variants implicated in

schizophrenia impact zebrafish brain development determining a reduc-

tion in the ventricular area of the brain. In particular, in addition to

classifying benign variants, predictors have to distinguish between loss of

function and hypomorphic variants. This challenge presents new

difficulties for the current state of the art predictors using different

strategies to predict variant effects, while the variability of results

suggests that we are far from a general pathogenicity predictor, some

groups have promising results in this challenge.

2 | MATERIALS AND METHODS

2.1 | Experimental data

The Katsanis lab assessed 38 PCM1 missense mutations in a

zebrafish model. The native zebrafish embryo PCM1 protein was

suppressed by injecting morpholino (MO) antisense oligonucleotides

to inhibit translation of messenger RNA (mRNA) of the PCM1 gene.

MOs are stable molecules consisting of a large, nonribose morpholine

backbone with four DNA bases pairing stably with mRNA at either

the translation start site (to disrupt protein synthesis) or at intron‐
exon boundaries (to disrupt mRNA splicing; Summerton & Weller,

1997). MOs have been shown to bind and block translation of mRNA

in vitro, in tissue culture cells, and, in vivo (Davis, Frangakis, &

Katsanis, 2014). Embryos deficient in PCM1 function show an

absence of brain ventricle formation.

For each mutation, the Katsanis lab injected a group of embryos

with MO and the mRNA of the human gene carrying the mutation

(MO+VAR). Brain ventricle formation of the group of (MO+VAR)

animals was compared to brain ventricle formation measured in

a group of animals with MO alone and a group with MO+WT.
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The ventricle space is filled with a fluorescent dye and imaged by

brightfield and fluorescence microscopy to access the effect on

mutations on ventricle size (Gutzman & Sive, 2009; Niederriter et al.,

2013). Each image was processed with an automated image

processing tool to quantify the ventricle structure volume (Mikut

et al., 2013; Näslund & Johnsson, 2016). p values for statistically

significantly different brain ventricle volumes between pairs of

conditions (Lowery, De Rienzo, Gutzman, & Sive, 2009) were

obtained using Student’s t test with a confidence level of 95%. The

functional effect of each variant was then assigned as follows. When

the p value for (MO+VAR) is not significantly different from MO

(p value > .05), but significantly different from MO+WT (p value <

.05), the variant is pathogenic or loss of function. If the p value (MO

+VAR) is significantly different from MO, but not from MO+WT, the

variant is benign. When the p value for (MO+VAR) is significantly

different from MO, and also significantly different from MO+WT, the

variant is hypomorphic or partial loss of function.

The experiment was performed in duplicate, blind to injection

and the experimental data provided by the Katsanis lab is shown in

Table 1. The dataset is composed of 16 benign variants (negative

controls), 10 hypomorphic, and 12 loss of function variants. In

percentages, 42% of the variants are benign and 58% have some

functional effect (~32% loss of function and ~26% hypomorphic).

2.2 | Dataset and classifications

The challenge presents 38 transgenic human PCM1 missense

mutations implicated in schizophrenia (Experimental data URL:

https://genomeinterpretation.org/content/PCM1). These variants

were assayed in a zebrafish model to determine their impact on

the posterior ventricle area as previously explained. Each variant

codes for a single amino acid substitution, showing no insertions or

deletions. The variant number used in this study refers to PCM1

mRNA (GenBank identifier: NM_001315507). Participants were

asked to predict the probability (p value) of the effect of the variants

on zebrafish brain development. These p values were predicted

considering the two different case scenarios: the probability that the

variant (MO+VAR) is significantly different from MO and the

probability that the variant is significantly different from MO+WT.

In addition, predictors were also allowed to specify the standard

deviation (SD) which defines the confidence of each prediction. Large

SD means low confidence, while small SD means that the predictor is

confident about the submitted prediction. According to the predicted

probabilities and their interpretation, the participants had to inform

the functional effect of the variant which could be: pathogenic,

hypomorphic or benign. Six out of seven submissions reported for all

the variants the p values, SD and functional effect.

2.3 | Performance assessment

The performance evaluation of bioinformatics tools aiming to predict

VUS is a nontrivial problem. Consequently, the assessment should be

more than discrimination between good and bad predictions. In this

challenge, participants were requested to predict the p values

associated to each variant under two different conditions. According

to the data provider results, the functional effects of each variant

could be: benign, pathogenic (loss of function) and hypomorphic

(partial loss of function). Even though one of the challenges was to

predict the p values relative to the changes from MO and MO+WT, it

was a very difficult task, to begin with. After analyzing the correlation

between experimental and predicted p values in the two experi-

mental conditions, we found that Pearson correlation coefficients

range between − 0.29 and 0.23 for different submissions, showing

that there is no relationship between experimental and predicted

p values. Predicted p values were therefore not taken into account to

perform the assessment and consequently, the use of global

evaluation metrics as ROC or precision‐recall curves was not

possible. This is why we only used the predicted variant effect

informed by the authors to address the final ranking.

To assess further the prediction reliability in a medical setting, a

binary classification was used based on the variant predicted effects.

The three variant effects mentioned above were reorganized as a

binary classification, benign and pathogenic (loss of function and

hypomorphic were considered together). A set of measures were

implemented to perform a thorough assessment and to obtain a

better description about predictor performance (Vihinen, 2012). The

aim was to produce a global overview of the strengths and

weaknesses of each method. For each submission, we calculate five

different scores to assess the quality of the binary prediction:

Balanced Accuracy (BACC), Matthews Correlation Coefficient

(MCC), F1 score (F1), True Positive Rate (TPR), and True Negative

Rate (TNR). All measures are defined in more detail in the Supporting

Information. The final ranking of predictor performances was the

average of the individual rankings produced by each measure. To

assess the statistical significance of each performance index, we

generated 10,000 random predictions and used these data to

estimate an empirical continuous score probability distribution (s).

The p value is then calculated by defining the proportion of random

predictions scoring > s.

The R scripts used to perform the assessment are publicly

available from the GitHub repository at URL: https://github.com/

BioComputingUP/CAGI‐PCM1‐assessment.

2.4 | Groups description

This challenge received seven submissions from six different groups

which were assessed blindly. Only one group (Bromberg lab)

contributed with two submissions. Group 3 submitted an empty

template and method description and consequently was not

considered in the assessment. After completing the assessment, all

groups provided their name and affiliations. Table 2 lists the

participating groups, ID, name, and method used. Group 1 (Casadio

lab) based their predictions on the Disease Index matrix (Casadio,

Vassura, Tiwari, Fariselli, & Luigi Martelli, 2011), which measures

how protein stability is affected by mutations. Group 2 (Lichtarge lab)

uses their Evolutionary Action approach (Katsonis & Lichtarge, 2014)

1476 | MONZON ET AL.

https://genomeinterpretation.org/content/PCM1
https://github.com/BioComputingUP/CAGI-PCM1-assessment
https://github.com/BioComputingUP/CAGI-PCM1-assessment


to relate the variant effect with the evolutionary fitness effect.

Group 4 (Bromberg lab) performed the predictions for their first

submission using SNAP (Bromberg & Rost, 2007; Bromberg, Yachdav,

& Rost, 2008), a neural network‐based method for the prediction of

the functional effects of non‐synonymous SNPs. In their second

submission, predictions were depending on fuNTRp, a Random

Forest‐based method to classify protein positions based on the

expected range of possible mutational impacts per position (Neutral

TABLE 1 PCM1 experimental data

Nucleotide variant Protein variant
p value from
MO

p value from
MO+WT

Functional
effect (class)

Functional effect
(description)

NM_001315507.1:c.17G>A p.(Gly6Asp) .067 .0001 2 Loss of function

NM_001315507.1:c.69G>C p.(Glu23Asp) .0004 .0007 1 Hypomorph

NM_001315507.1:c.229A>G p.(Thr77Ala) .57 .0001 2 Loss of function

NM_001315507.1:c.436A>G p.(Met146Val) .0001 .13 0 Benign

NM_001315507.1:c.467C>T p.(Ala156Val) .0001 .0099 1 Hypomorph

NM_001315507.1:c.599T>C p.(Met200Thr) 0.28 .0001 2 Loss of function

NM_001315507.1:c.600G>A p.(Met200Ile) .0022 .0049 1 Hypomorph

NM_001315507.1:c.641A>G p.(Asp214Gly) .0005 .0013 1 Hypomorph

NM_001315507.1:c.742G>C p.(Glu248Gln) .53 .0001 2 Loss of function

NM_001315507.1:c.931G>C p.(Glu311Gln) .0012 .0036 1 Hypomorph

NM_001315507.1:c.1106A>G p.(Glu369Gly) .059 .0001 2 Loss of function

NM_001315507.1:c.1168C>T p.(Pro390Ser) .38 .0001 2 Loss of function

NM_001315507.1:c.1414C>G p.(Leu472Val) .039 .0003 1 Hypomorph

NM_001315507.1:c.1445G>T p.(Gly482Val) .0002 .0012 1 Hypomorph

NM_001315507.1:c.1627G>A p.(Glu543Lys) .0001 .64 0 Benign

NM_001315507.1:c.1721A>G p.(Asp574Gly) .0044 .0021 1 Hypomorph

NM_001315507.1:c.1811G>T p.(Arg604Leu) .0001 .55 0 Benign

NM_001315507.1:c.1870G>A p.(Glu624Lys) .0001 .58 0 Benign

NM_001315507.1:c.1977C>G p.(Ile659Met) .0001 .62 0 Benign

NM_001315507.1:c.2410A>C p.(Ser804Arg) .0001 .69 0 Benign

NM_001315507.1:c.2498G>C p.(Arg833Thr) .0001 .71 0 Benign

NM_001315507.1:c.2626T>C p.(Cys876Arg) .0033 .59 0 Benign

NM_006197.3:c.2674G>A p.(Gly892Arg) .16 .0007 2 Loss of function

NM_001315507.1:c.2750A>G p.(Glu917Gly) .19 .0001 2 Loss of function

NM_001315507.1:c.2862G>C p.(Lys954Asn) .0001 .92 0 Benign

NM_001315507.1:c.3374A>G p.(Asn1125Ser) .0001 .11 0 Benign

NM_001315507.1:c.3823A>G p.(Lys1275Glu) .0001 .32 0 Benign

NM_001315507.1:c.4055A>T p.(His1352Leu) .012 .0045 1 Hypomorph

NM_001315507.1:c.4082G>A p.(Cys1361Tyr) .0003 .61 0 Benign

NM_001315507.1:c.4469C>G p.(Ala1490Gly) .0001 .55 0 Benign

NM_001315507.1:c.4603G>A p.(Glu1535Lys) .0001 .59 0 Benign

NM_001315507.1:c.4658C>G p.(Ala1553Gly) .0015 .0034 1 Hypomorph

NM_006197.3:c.4667G>A p.(Gly1556Asp) .36 .0001 2 Loss of function

NM_006197.3:c.5583A>C p.(Lys1861Asn) .0001 .13 0 Benign

NM_006197.3:c.5625T>G p.(Asn1875Lys) .087 .0001 2 Loss of function

NM_006197.3:c.5720G>A p.(Arg1907His) .0001 .12 0 Benign

NM_006197.3:c.5738C>T p.(Pro1913Leu) .75 .0027 2 Loss of function

NM_006197.3:c.5935G>T p.(Ala1979Ser) .72 .0027 2 Loss of function

Note: Variant nomenclature refers to PCM1 mRNA (Refseq transcripts: NM_001315507.1, NM_006197.3). Each variant is associated with the

corresponding p values in the two evaluated experimental conditions (MO and MO+WT) and the resulting functional effect. Loss of function and

hypermorphic variants were evaluated together as a single category.

Abbreviations: PCMI, pericentriolar material 1; mRNA, messenger RNA.
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positions = no or weak effects; Rheostat positions = range of effects,

i.e., functional tuning; Toggle positions =mostly strong effects).

Group 5 (Carter lab) analyzed each variant with VEST (Carter,

Douville, Stenson, Cooper, & Karchin, 2013), assigning to each

mutation a score indicating confidence in a functional mutation.

Group 6 (BioFolD unit) used the SNPs&GO (Capriotti et al., 2013)

and PhD‐SNP (Capriotti, Calabrese, & Casadio, 2006) methods. A

more detailed description of the methods used by each group can be

found in the Supporting Information.

3 | RESULTS

3.1 | Participation and similarity between
predictions

In the PCM1 CAGI‐5 challenge, participants were requested to

predict the probability of the effect caused by 38 variants on

zebrafish brain development. Essentially, the predicted probability

allowed to infer three kinds of functional effects associated with

each variant: benign, hypomorphic (partial loss of function), and loss

of function. We performed a correlation analysis between

submissions to address the similarity. Then, we divided the

predictions into two subsets: variants predicted as loss of function

and predicted as hypomorphic. Figure 1 shows the two predictions

submitted by Bromberg lab obtained the same probability values

for each variant. Both predictions used SNAP (Bromberg &

Rost, 2007; Bromberg et al., 2008) to predict the p values but

differed in the way the variant is classified. Their submission 2 used

fuNTRp, a tool based on the random forest that predicts position

types (i.e., expected range of variant effects per position). Another

observation from this analysis is that most groups predicted very

different p values, highlighting difficult of this challenge. We can also

observe some weak positive and negative correlations between

groups. On one hand, we have a weak positive correlation between

groups 4 and 6, possibly because predicted p values are quite

similar in some variants. Groups 2 and 5 also show a positive

weak correlation possibly because predicted p values in both groups

are close to zero. On the other hand, we have some weak negative

correlations between groups which have predicted opposite

probability values for some variants, such as groups 2 and 5 versus

groups 4 and 6.

3.2 | Assessment criteria and performance
evaluation

The evaluation criteria used to assess a CAGI challenge directly

influence perceptions gained from the test. To highlight predictor

performance and their practical relevance, we performed the evalua-

tion only considering the predicted functional effect of each variant

TABLE 2 Predictions overview

Submission ID Group ID Prediction features

Submission 1.1 Group 1 (Casadio lab) Protein stability

Submission 2.1 Group 2 (Lichtarge lab) Evolutionary action

Submission 3.1 Group 3 No predictions made

Submission 4.1 Group 4 (Bromberg lab) Conservation, annotation

Submission 4.2 Group 4 (Bromberg lab) Conservation, annotation

Submission 5.1 Group 5 (Carter lab) Annotation

Submission 6.1 Group 6 (BioFolD unit) Metaprediction

Note: Each submission is associated to the predictor group and a summary

of the features used for the prediction.

F IGURE 1 The similarity between predicted p values. (a,b) Each cell shows the Pearson correlation coefficient between two submissions,
with a color scale ranging from green (+1, perfect correlation) to red (0, no correlation) and black (−1, perfect anti‐correlation)
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provided by the participants. As most submissions reported the

predicted p values, we tried first to perform the assessment as an

inherently continuous prediction challenge. After some exploratory

analysis, we concluded that predicted p values among all submissions

did not agree at all with the experimental p values and also with

the interpretation of the p values to infer the functional classes (Figures

2 and 3). For this reason, we decided to perform the assessment using

only the predicted functional class of each mutation.

The performance was evaluated using five standard measures as

described above. Our assessment shows that the six submissions

achieved in general a poor performance. This is highlighted by the

MCC values (Figure 4), where most of the submissions have values

close or below zero. As the average among all submissions is −0.06,

this means that the correlation between the experimental and

predicted variant functional effect is no better than random

predictions in most of the cases. The highest MCC value is 0.35

and was reached by submission 4.1 (Bromberg lab). This submission

correctly predicted 10 out of 22 pathogenic variants and 14 out of 16

benign variants (Table 3). Then, submission 5.1 (Carter lab) obtained

the lowest MCC value (−0.35), correctly predicting 12 disease

mutations but only 2 benigns (Table 3).

For BACC, we can observe that submissions 4.1 (Bromberg lab)

and 6.1 (BioFolD), performed better than other methods, also

considering their MCC values (Figure 4). Since a method could be

biased to predict the more frequent class, BACC is a good way to

calculate the accuracy evaluating if the predictor takes advantage or

not of an imbalanced test set. Consequently, F1 shows values higher

than 0.50 for three out of seven submissions. F1 measure considers

the precision and recall of the test, submission 1.1 (Casadio lab)

obtained the highest F1 value of 0.67, followed by submissions 4.1

and 6.1 with 0.59 and 0.53, respectively. However, if we observe the

TNR and confusion matrix of submission 1.1 (see Table 3), this

predictor presents a biased confusion matrix and was not able to

identify any benign variants.

To perform a global assessment of each predictor perfor-

mance we need to take into account all performance measures

together instead of just comparing them separately. We decided

to observe the ranking achieved for each submission on each

considered measure. Moreover, this allows nonexpert users to

better understand the results of the assessment. The Bromberg

lab (submission 4.1) achieved the best overall performance

compared with all other predictors, ranking first in BACC and

MCC measures, second in F1 and TNR and sharing the third place

in TNR (see Table 4). BioFolD (submission 6.1) ranked second in

overall performance, second in BACC and MCC, and third in the

other measures. The Casadio lab achieved the best rank in F1

and TNR measures and ranking third in overall performance.

However, their prediction was biased toward diseases pheno-

types, with no benign variant correctly predicted (Table 3).

Something similar but opposite happened with the Bromberg lab

(submission 4.2), where the prediction was biased towards benign

variants and only one disease variant predicted correctly (Table

3). In addition, we can observe that MCC values for the two

submissions mentioned above are negative (i.e., negatively

correlated) and almost zero (i.e. close to random). Observing

the confusion matrices, we can conclude that most submissions

produced unbalanced predictions biased towards the prediction

of disease phenotypes.

Considering the poor performance of most predictors, we only

calculated the statistical significance of submission 4.1 (Bromberg

lab) for the BACC, MCC, and F1 measures. A bootstrap with 10,000

replicas was used to test whether the performance of submission 4.1

could be achieved by chance. We can conclude that it performs

better than random (p value < .05) for MCC and BACC measures (see

Figure S1). The only exception is F1, denoting unbalanced predicted

classes from the real data.

Another interesting aspect of this challenge is to see how each

group correctly predicted the real disease effect, loss of function and

hypomorph. In Table S1, we can see the contingency matrices split

into three categories. Most of the groups had difficulties to identify

the correct disease class. Submission 4.1 correctly predicted 4

hypomorph variants and no loss of function one. Submission 6.1

correctly identified one loss of function and one hypomorph variant.

On the other hand, submission 1.1, which was biased to predict

disease variants, correctly predicted six hypomorphs and four loss of

function.

3.3 | Difficult variants

Looking at the predicted functional effects for each variant, we

can see that some were particularly complex to be predicted

(Figure 5). The functional effect (benign and pathogenic) was well

predicted for 41% of the proposed variants by more than half of

the predictors. Due to the limited structural characterization of

PCM1 is difficult to analyze the structural properties of each

residue. We tried to explore further some properties of PCM1

using FELLS (Piovesan, Walsh, Minervini, & Tosatto, 2017).

Disease variant p.G892W was correctly predicted by all submis-

sions and that position presents high propensity to be a coil and

disordered. On the other hand, disease variant p.E23D was not

identified by any predictor and shows high propensity to be

disordered.

There are 15 variants where most groups failed to correctly

predict their effect (<50% correctly predicted): four benign, five

hypomorphs (disease) and six loss‐of‐function (disease). Interestingly,

submission 1.1 (Casadio lab) predicted correctly 5 of these 15 disease

mutations. However, this predictor was biased towards pathogenic

variants and not able to identify any benign. The PCM1 challenge

highlights how some variants are really hard targets for most of the

methods.

4 | DISCUSSION

The determination of novel variant effects is a key challenge of

great value for clinicians. Due to the diversity and complexity of
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F IGURE 2 Predicted p values with their corresponding standard deviation for each experimental condition by the group. The x‐axis is from 1

to 38 and represents the predicted p values for a particular position (sequentially ordered by the position on the sequence). The y‐axis is the
value of the predicted p value. Dot shapes represent the variant effect, with triangles for pathogenic and circles for benign. The color indicates
the experimental p value, red for p value < .05 and black for p value ≥ .05
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F IGURE 3 Predicted versus experimental p values for all submissions. The predicted value (y‐axis) is plotted against the experimental

value (x‐axis) for all variants (in the two experimental conditions) in each of the six submissions
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the biological systems, a variant could impact at different levels

such as protein function, subcellular localization, metabolic path-

ways, among others (Hamp & Rost, 2012). The best predictor

should be able to discriminate between pathogenic and benign

variants. Here, we presented the assessment of the CAGI‐5 PCM1

challenge. This challenge is based on the prediction of the

probability of missense variant effects, in analogy to the CAGI‐3
p16 challenge (Carraro et al., 2017). While the p16 challenge was

testing the ability to predict cell proliferation rate, the PCM1

challenge is focused on predicting the probable variant effect on

zebrafish brain development. PCM1 is a component of centriolar

satellites occurring around centrosomes in vertebrate cells

(Dammermann & Merdes, 2002; Kubo & Tsukita, 2003). It also

interacts with BBS4 and DISC1 (Kamiya et al., 2008; Miyoshi et al.,

2004) and has an important role in centrosome formation, which is

needed for proper neurodevelopment (Ayala, Shu, & Tsai, 2007;

Gupta, Tsai, & Wynshaw‐Boris, 2002; Mochida & Walsh, 2004;

Solecki, Govek, Tomoda, & Hatten, 2006; Tsai & Gleeson, 2005).

The Katsanis lab provided experimental data for 38 missense

mutations in PCM1 in a zebrafish model. The experimental effect

determined by the data providers is unambiguous and resulted of

brain ventricle volumes between MO and MO+WT. This kind of

comparison studies have been performed in the past and the

specificity/sensitivity metrics have been reported to be high

(Zaghloul et al., 2010).

F IGURE 4 Submissions performance evaluation.
Each cell represents the value of a measure for a specific
submission. The color scale ranges from dark green

(+1, perfect performance) to red (−1, perfect anticorrelation just
for MCC). White means zero in terms of performance. MCC,
Matthews correlation coefficient

TABLE 3 Confusion matrices for all submissions

Submission 1.1 Submission 2.1 Submission 4.1

Obs. Disease Obs. Benign Obs. Disease Obs. Benign Obs. Disease Obs. Benign

Pred. Disease 19 16 Pred. Disease 8 6 Pred. Disease 10 2

Pred. Benign 3 0 Pred. Benign 14 10 Pred. Benign 12 14

Submission 4.2 Submission 5.1 Submission 6.1

Obs. Disease Obs. Benign Obs. Disease Obs. Benign Obs. Disease Obs. Benign

Pred. Disease 1 1 Pred. Disease 12 14 Pred. Disease 10 6

Pred. Benign 21 15 Pred. Benign 10 2 Pred. Benign 12 10

Note: Disease category contains hypomorph and loss of function variants.

TABLE 4 Submissions ranking

Submission ID BACC MCC F1 TPR TNR Avg. ranking Final rank

Submission 4.1 1 (0.67) 1 (0.35) 2 (0.59) 3.5 (0.46) 2 (0.88) 1.9 1

Submission 6.1 2 (0.54) 2 (0.08) 3 (0.53) 3.5 (0.46) 3.5 (0.63) 2.8 2

Submission 1.1 5 (0.43) 5 (−0.25) 1 (0.67) 1 (0.86) 6 (0) 3.6 3

Submission 2.1 3 (0.49) 3 (−0.01) 5 (0.44) 5 (0.36) 3.5 (0.63) 3.9 4

Submission 4.2 4 (0.49) 4 (−0.04) 6 (0.08) 6 (0.05) 1 (0.94) 4.2 5

Submission 5.1 6 (0.34) 6 (−0.35) 4 (0.5) 2 (0.55) 5 (0.13) 4.6 6

Note: Individual and overall rankings among all submissions based on the performance measures considered. Each cell contains the ranking of a

submission for a specific performance measure and in brackets the performance value. The overall final ranking is obtained by the average rank achieved

for each submission considering all the performance measures. Bold values highlight submissions which obtained the highest rank for a particular

performance measure.

Abbreviations: BACC, balanced accuracy; MACC, Matthews correlation coefficient; TNR, true negative rate; TPR, true positive rate.
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Submissions were compared with experimental data to

evaluate their prediction performance. Using a set of performance

measures highlighting the strengths and weaknesses of

each predictor similar to previous CAGI assessments (Carraro

et al., 2017).

From a technical point of view, the groups used different

approaches to predict p values and variant effect, ranging from

machine learning to position‐specific scoring matrices. The

assessment suggests that most state‐of‐the‐art predictors parti-

cipating in this challenge were not sufficient to perform reliable

variant effect predictions. The absence of structural information

and high disorder content make this protein challenging,

especially for predictors based on structural information. The

MCC values reached by different submissions are subpar, close to

random prediction. MCC is one of the best measures to handle

unbalanced data, since some predictions were biased to identify

disease or benign phenotypes (Boughorbel, Jarray, & El‐Anbari,
2017). The best MCC and BACC values were reached by

submission 4.1 (Bromberg lab), showing also the best overall

ranking. They correctly predicted 10 out of 22 disease variants

and 14 out of 16 benign variants (Table 3). However, if we look at

the disease class considering the loss of function and hypho-

morph, submission 4.1 correctly predicted only 4 hypomorph

variants. Showing again the difficulty in p‐values interpretation

(Table S1). Anyway, these results suggest that SNAP (Bromberg &

Rost, 2007; Bromberg et al., 2008), a neural network‐based
method, may be a useful method to screen big datasets for

pathogenic variants in a similar context.

Interestingly, group 1 (Casadio Lab) obtained a promising TPR of

0.86 and predicted 19 out of 22 disease variants but they could not

identify any benign variants. Nevertheless, they identified the highest

number of loss of function variants (Table S1). Conversely, group 4

submission 2 reached a high TNR score and predicted 15 out of

16 benign variants but identified only 1 disease variant. Group 6

(BioFolD unit) well predicted 10 out of 16 benign variants and 10 out

of 22 diseases, scoring second considering the overall rank and MCC

value. We should emphasize here that data imbalance frequently

occurs in biomedical applications and the use of inadequate

performance metrics could lead to misinterpretation of predictors

performance (Boughorbel et al., 2017).

This CAGI‐5 PCM1 challenge evidence that there is still plenty

of work to improve the pathogenicity prediction of VUS. Despite

the generally low performance of predictors, some identified a

good number of disease and benign variants. However, we still

have to improve our prediction methods if we want a generic

pathogenicity predictor. We expect that the CAGI challenges

which help motivate research, improving the current methods and

generating new ideas.

ACKNOWLEDGMENTS

The CAGI experiment coordination is supported by National

Institutes of Health U41 HG007346 and the CAGI conference by

NIH R13 HG006650. This work was partially supported by the

Italian Ministry of Health grants GR‐2011‐02347754 and

GR‐2011‐02346845 to E. L. and S. C. E. T., respectively; by the

Fondazione Istituto di Ricerca Pediatrica ‐ Città della Speranza,

Grant 18‐04 to E. L. P. K. and O. L. were supported by

the National Institutes of Health (GM079656 and GM066099);

E. C. was supported by an FFABR grant from the Ministry

of Education, Universities and Research (MIUR). A. M. M. is

funded by the research program “MSCA Seal of Excellence

@UniPD”. Y. B., Y. W., and M. M. were supported by the

NIH U01 GM115486 grant.

ORCID

Alexander Miguel Monzon http://orcid.org/0000-0003-0362-8218

Maximilian Miller http://orcid.org/0000-0002-1335-9499

F IGURE 5 Percentage of groups which correctly predicted the effect of each variant. Hypomorph and loss of function variants were

considered as a disease in group predictions. The variants are colored by their experimental effect

MONZON ET AL. | 1483

http://orcid.org/0000-0003-0362-8218
http://orcid.org/0000-0002-1335-9499


Castrense Savojardo http://orcid.org/0000-0002-7359-0633

Panagiotis Katsonis http://orcid.org/0000-0002-7172-1644

Olivier Lichtarge http://orcid.org/0000-0003-4057-7122

Gaia Andreoletti http://orcid.org/0000-0002-0452-0009

John Moult http://orcid.org/0000-0002-3012-2282

Steven E. Brenner http://orcid.org/0000-0001-7559-6185

Emanuela Leonardi http://orcid.org/0000-0001-8486-8461

Silvio C.E. Tosatto http://orcid.org/0000-0003-4525-7793

REFERENCES

Ansley, S. J., Badano, J. L., Blacque, O. E., Hill, J., Hoskins, B. E.,

Leitch, C. C., … Katsanis, N. (2003). Basal body dysfunction is

a likely cause of pleiotropic Bardet–Biedl syndrome. Nature, 425,

628–633.

Ayala, R., Shu, T., & Tsai, L. ‐H. (2007). Trekking across the brain: The

journey of neuronal migration. Cell, 128(1), 29–43.

Boughorbel, S., Jarray, F., & El‐Anbari, M. (2017). Optimal classifier for

imbalanced data using Matthews Correlation Coefficient metric. PLoS

One, 12(6), e0177678.

Bromberg, Y., & Rost, B. (2007). SNAP: Predict effect of non‐synonymous

polymorphisms on function. Nucleic Acids Research, 35(11),

3823–3835.

Bromberg, Y., Yachdav, G., & Rost, B. (2008). SNAP predicts

effect of mutations on protein function. Bioinformatics, 24(20),

2397–2398.

Capriotti, E., Calabrese, R., & Casadio, R. (2006). Predicting the insurgence

of human genetic diseases associated to single point protein

mutations with support vector machines and evolutionary informa-

tion. Bioinformatics, 22(22), 2729–2734.

Capriotti, E., Calabrese, R., Fariselli, P., Martelli, P. L., Altman, R. B., &

Casadio, R. (2013). WS‐SNPs&GO: A web server for predicting the

deleterious effect of human protein variants using functional

annotation. BMC Genomics, 14(Suppl 3), S6.

Carraro, M., Minervini, G., Giollo, M., Bromberg, Y., Capriotti, E., Casadio,

R., … Tosatto, S. C. E. (2017). Performance of in silico tools for the

evaluation of p16INK4a (CDKN2A) variants in CAGI. Human Mutation,

38(9), 1042–1050.

Carter, H., Douville, C., Stenson, P. D., Cooper, D. N., & Karchin, R. (2013).

Identifying Mendelian disease genes with the variant effect scoring

tool. BMC Genomics, 14(Suppl 3), S3.

Casadio, R., Vassura, M., Tiwari, S., Fariselli, P., & Luigi Martelli, P. (2011).

Correlating disease‐related mutations to their effect on protein

stability: A large‐scale analysis of the human proteome. Human

Mutation, 32(10), 1161–1170.

Dammermann, A., & Merdes, A. (2002). Assembly of centrosomal proteins

and microtubule organization depends on PCM‐1. The Journal of Cell

Biology, 159(2), 255–266.

Davis, E. E., Frangakis, S., & Katsanis, N. (2014). Interpreting human

genetic variation with in vivo zebrafish assays. Biochimica et Biophysica

Acta, 1842(10), 1960–1970.

Guo, J., Yang, Z., Song, W., Chen, Q., Wang, F., Zhang, Q., & Zhu, X. (2006).

Nudel contributes to microtubule anchoring at the mother

centriole and is involved in both dynein‐dependent and ‐independent
centrosomal protein assembly. Molecular Biology of the Cell, 17(2),

680–689.

Gupta, A., Tsai, L. ‐H., & Wynshaw‐Boris, A. (2002). Life is a journey: A

genetic look at neocortical development. Nature Reviews Genetics, 3(5),

342–355.

Gurling, H. M. D., Critchley, H., Datta, S. R., McQuillin, A., Blaveri, E.,

Thirumalai, S., … Dolan, R. J. (2006). Genetic association and brain

morphology studies and the chromosome 8p22 pericentriolar

material 1 (PCM1) gene in susceptibility to schizophrenia. Archives

of General Psychiatry, 63(8), 844–854.

Gutzman, J. H., Sive, H., & Gutzman, J. H. (2009). Zebrafish brain

ventricle injection. Journal of Visualized Experiments: JoVE, (26),

1–3. https://doi.org/10.3791/1218. http://www.jove.com/index/

Details.stp?ID=1218

Hamp, T., & Rost, B. (2012). Alternative protein‐protein
interfaces are frequent exceptions. PLoS Computational Biology, 8(8),

e1002623.

Kamiya, A., Tan, P. L., Kubo, K. ‐I., Engelhard, C., Ishizuka, K., Kubo, A., …
Sawa, A. (2008). Recruitment of PCM1 to the centrosome

by the cooperative action of DISC1 and BBS4: A candidate

for psychiatric illnesses. Archives of General Psychiatry, 65(9),

996–1006.

Katsonis, P., & Lichtarge, O. (2014). A formal perturbation equation

between genotype and phenotype determines the Evolutionary

Action of protein‐coding variations on fitness. Genome Research,

24(12), 2050–2058.

Kubo, A., & Tsukita, S. (2003). Non‐membranous granular organelle

consisting of PCM‐1: Subcellular distribution and cell‐cycle‐depen-
dent assembly/disassembly. Journal of Cell Science, 116(Pt 5),

919–928.

Lowery, L. A., De Rienzo, G., Gutzman, J. H., & Sive, H. (2009).

Characterization and classification of zebrafish brain morphology

mutants. Anatomical Record, 292(1), 94–106.

Mikut, R., Dickmeis, T., Driever, W., Geurts, P., Hamprecht, F. A., Kausler,

B. X., … Peyriéras, N. (2013). Automated processing of zebrafish

imaging data: A survey. Zebrafish, 10(3), 401–421.

Miyoshi, K., Asanuma, M., Miyazaki, I., Diaz‐Corrales, F. J., Katayama, T.,

Tohyama, M., & Ogawa, N. (2004). DISC1 localizes to the centrosome

by binding to kendrin. Biochemical and Biophysical Research Commu-

nications, 317(4), 1195–1199.

Mochida, G. H., & Walsh, C. A. (2004). Genetic basis of developmental

malformations of the cerebral cortex. Archives of Neurology, 61(5),

637–640.

Niederriter, A. R., Davis, E. E., Golzio, C., Oh, E. C., Tsai, I. ‐C., & Katsanis,

N. (2013). In vivo modeling of the morbid human genome using Danio

rerio. Journal of Visualized Experiments: JoVE, (78), e50338. https://doi.

org/10.3791/50338

Niroula, A., & Vihinen, M. (2016). Variation interpretation predictors:

Principles, types, performance, and choice. Human Mutation, 37(6),

579–597.

Näslund, J., & Johnsson, J. I. (2016). Environmental enrichment for fish in

captive environments: Effects of physical structures and substrates.

Fish and Fisheries, 17(1), 1–30.

Piovesan, D., Tabaro, F., Paladin, L., Necci, M., Micetic, I., Camilloni, C., …

Tosatto, S. C. E. (2018). MobiDB 3.0: More annotations for intrinsic

disorder, conformational diversity and interactions in proteins. Nucleic

Acids Research, 46(D1), D471–D476.

Piovesan, D., Walsh, I., Minervini, G., & Tosatto, S. C. E. (2017). FELLS:

Fast estimator of latent local structure. Bioinformatics, 33(12),

1889–1891.

Solecki, D. J., Govek, E. ‐E., Tomoda, T., & Hatten, M. E. (2006). Neuronal

polarity in CNS development. Genes & Development, 20(19),

2639–2647.

Summerton, J., & Weller, D. (1997). Morpholino antisense oligomers:

Design, preparation, and properties. Antisense & Nucleic Acid Drug

Development, 7(3), 187–195.

The UniProt Consortium (2017). UniProt: The universal protein knowl-

edgebase. Nucleic Acids Research, 45(D1), D158–D169.

Tsai, L. ‐H., & Gleeson, J. G. (2005). Nucleokinesis in neuronal migration.

Neuron, 46(3), 383–388.

Villumsen, B. H., Danielsen, J. R., Povlsen, L., Sylvestersen, K. B.,

Merdes, A., Beli, P., … Bekker‐Jensen, S. (2013). A new cellular

1484 | MONZON ET AL.

http://orcid.org/0000-0002-7359-0633
http://orcid.org/0000-0002-7172-1644
http://orcid.org/0000-0003-4057-7122
http://orcid.org/0000-0002-0452-0009
http://orcid.org/0000-0002-3012-2282
http://orcid.org/0000-0001-7559-6185
http://orcid.org/0000-0001-8486-8461
http://orcid.org/0000-0003-4525-7793
https://doi.org/10.3791/1218
http://www.jove.com/index/Details.stp?ID=1218
http://www.jove.com/index/Details.stp?ID=1218
https://doi.org/10.3791/50338
https://doi.org/10.3791/50338


stress response that triggers centriolar satellite reorganization

and ciliogenesis. The EMBO Journal, 32(23), 3029–3040.

Vihinen, M. (2012). How to evaluate performance of prediction methods?

measures and their interpretation in variation effect analysis.

BMCGenomics, 13(Suppl 4), S2.

Zaghloul, N. A., Liu, Y., Gerdes, J. M., Gascue, C., Oh, E. C., Leitch, C. C., …

Katsanis, N. (2010). Functional analyses of variants reveal a significant

role for dominant negative and common alleles in oligogenic Bardet‐
Biedl syndrome. Proceedings of the National Academy of Sciences of the

United States of America, 107(23), 10602–10607.

Zoubovsky, S., Oh, E. C., Cash‐Padgett, T., Johnson, A. W., Hou, Z.,

Mori, S., … Jaaro‐Peled, H. (2015). Neuroanatomical and behavioral

deficits in mice haploinsufficient for pericentriolar material 1 (Pcm1).

Neuroscience Research, 98, 45–49.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section.

How to cite this article: Monzon AM, Carraro M, Chiricosta L,

et al. Performance of computational methods for the

evaluation of Pericentriolar Material 1 missense variants in

CAGI‐5. Human Mutation. 2019;40:1474–1485.

https://doi.org/10.1002/humu.23856

MONZON ET AL. | 1485

https://doi.org/10.1002/humu.23856



