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Abstract
The detection of remote homolog pairs of proteins using computational methods is a pivotal problem in structural
bioinformatics, aiming to compute protein folds on the basis of information in the database of known structures.
In the last 25 years, several methods have been developed to tackle this problem, based on different approaches
including sequence^ sequence alignments and/or structure comparison. In this article, we will briefly discuss When,
Why, Where and How (WWWH) to perform remote homology search, reviewing some of the most widely
adopted computational approaches. The specific aim is highlighting the basic criteria implemented by different
research groups and commenting on the status of the art as well as on still-open questions.

Keywords: remote homolog detection; protein structure prediction; sequence alignment; threading; fold recognition

SYNOPSIS
The protein-folding problem is traditionally the
problem where different expertise from different

fields was integrated along with the goal of finding

solutions to the long-standing issue of computing

the three-dimensional (3D) structure of proteins

starting from their residue sequence. This problem

was never solved with analytical approaches for

several reasons, including the fact we are still lacking

an exhaustive description of all the subtle atomic

interactions inside the protein world and those

among the protein and its solvent environment.

Luckily, structural bioinformatics in the last decade

was able to show that, after all, protein structure is

rather conserved within families of proteins perform-

ing the same functions in different organisms

belonging to different kingdoms. Based on this

notion several approaches have been developed and

described in the literature to address the problem of

protein structure prediction [1]. From this, it is

evident that structural bioinformaticians are willing

to provide solutions to protein crystallographers for

integrating the information flow in an efficient way.

In order to cope with the increasing interest in

computational solutions, critical assessments of the

different heuristic methods were launched as inter-

national experiments through the years (Critical

Assessment of Techniques for Protein Structure

Prediction, or CASPs) starting some 14 years ago

(http://predictioncenter.org/casp6). What did we

learn? Very simply, as it can be found on the

tens of specialised textbooks on bioinformatics

(www.iscb.org/bioinformaticsBooks.shtml), our pre-

sent knowledge on protein structure comparison can

be summarised into the following basic rules:

(i) Highly homologous sequences are endowed

with very similar structures.

(ii) Distantly related sequences (with low homol-

ogy, with a threshold that is routinely set in
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the range of 30% sequence identity) may be

endowed with the same 3D structure or may

have even partially overlapping structures when

they perform similar functions.

Based on these considerations, the first and only

reliable method that we may think to adopt when

trying to compute a 3D structure of a given, not-

yet-structurally determined protein is building by

homology, or better building by comparison. What

do we need to compare? First of all, sequence-to-

sequence comparison must be done. If we are lucky

and the sequence identity is above 30% (a remarkable

suggestion: the higher the identity value is, the better

the computed model will be) and our target

sequence can be compared to a sequence already

endowed with an experimentally known 3D

structure, we may think to adopt this folding as a

reliable folding also for our protein.

Unfortunately, when this is not the case, we are

forced to search for distantly related proteins, since

we know that, through evolution, protein modules

performing a given functions have been conserved,

also independently of sequence identity.

Furthermore, real life is always full of complications:

we now know from all the structures in the Protein

Database (PDB, about 40.000 according to August

2006 release) that similar functions may also

correspond to different structures, and this obviously

complicates the general picture.

This last set of difficult problems is generally

addressed adopting the so-called ab initio methods [2]

and by a broad spectrum of different methods that

basically try to take advantage of a search in the

protein sequence and structure space with different

perspectives. This is what we call searching for distantly
related homologs.

THEWWWHOF REMOTE
HOMOLOG SEARCH
We may simplify our problem by considering the

three questions and their answers, as in the following.

When tosearch for distantlyrelated homologs? When we are

unlucky and after sequence alignment we do not

find any sequence with some reliable similarity to

our pet protein with an already known 3D structure.

Why to search for distantly related homologs? Because we

hope to overcome all the difficulties that gene

evolution apparently produced so far to complicate

matters.

Where to search for distantly related homologs? In the

sequence and structure protein space that we know

thanks to the effort of all the experimentalists,

namely in the data bases of known protein sequences

and structures.

The problem now is how to search for distantly

related homologs, and this is still an open problem,

since new paradigms are always welcome to improve

the results. Before entering into the realm of all the

methods that have been developed so far, one should

take into consideration that the procedure, whatever

implementation is realised later on, is based on the

assumption that what we presently know is sufficient

to give us an answer. This may be a severe limitation

and also an explanation of why we are not always

successful.

GLOSSARYOF HOMOLOGY
When we define homologous proteins, we imply

that they descend from a common ancestor. Remote

homologs are pairs of proteins that have similar

structures and functions but lack easily detectable

sequence similarity. Many remote homologs have

been discovered by a systematic structural neigh-

bouring procedure [1]. Literature dating back to the

1970s reports semantic distinctions of homology

into ortholog, paralog or xenolog depending on different

evolutionary events, which have been debated and

described at length in all textbooks on molecular

genetics [3]. Speciation events led to orthologs, gene
duplication events produced parologs and lateral

(horizontal) gene transfer originated xenologs. This

distinction is maintained for genes, especially if one

is a genetist/molecular biologist. However if one

is a bioinformatician, it is sufficient to remember that

homologs have similar protein structures, but that,

unfortunately, protein structure similarity does not
imply homology [4, 5]. Here, problems start, as

well as all the computational methods that were

invented to find approximate solutions by taking

advantage of the progressive amount of data stored in

the databases.

STRUCTURALCLASSIFICATION
Correct evolutionary classification of proteins is

subjective. Structural domains are considered as

evolutionary units. When delving into substructures,

it is often debated when structural divergence ends

and convergence starts [6, 7].
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The database of Structural Classification of

Proteins (SCOP) [8] has become the gold standard

in evolutionary classification [9]. SCOP describes in

a hierarchical way four different levels of protein

classification, namely: class, fold, superfamily and family
(Figure 1). Proteins with the same fold but collected

into different superfamilies lack evidence of

a common ancestor; those with the same fold and

in the same superfamily show some evidence of

a common ancestor. This evidence is deduced from

characteristics such as conservation of rare structural

features, clusters of conserved residues, sequence

similarity through intermediate sequences or func-

tional similarities. Proteins with clear sequence

similarity are grouped into families. Protein pairs

listed in the same superfamily but belonging to

different families are typical benchmarks for testing

the ability of computational methods to identify

remote homology [10].

Over the years, researchers have tried to tackle

the problem of remote homolog identification by

developing a wealth of different computational

methods to detect protein sequence similarities.

The computational methods can be divided into

two major classes: (A) methods that compare proteins

on the basis of their sequence information; (B)

methods that compare protein structures (i.e. using

their three-dimensional structures). In this article, we

review the most general aspect of these different

approaches, focusing on their underlying concepts

(for a comprehensive list of sources, see also [11]).

COMPUTATIONALMETHODS
The computational methods aiming at detecting

remote homolog sequences face two different

but connected problems: (i) finding the best true

homolog among the proteins in the database;

(ii) building the correct alignment. While in the

last years there have been a significant improvement

for the first task, the latter one has been proved to

be more problematic [5, 11].

For sake of clarity, we can further split the

classification of the computational methods as

follows:

(A) methods that compare proteins on the basis of

their sequence information:

(A1) Based only on protein sequences

comparison

(A2) Based on protein sequence profiles

(A3) Based on information derived from protein

structures

(A4) Based on machine learning predictors

(A5) Based on consensus

(B) Methods that compare protein structures (i.e.

using their 3D structures) based on structure-

versus-structure alignment.

This classification reflects also what was published

through the years and details on the different

methods can be found on a recent review article

[11]. However, more recent developments, and

methods based on machine learning and consensus,

were not included. Therefore, we will focus

specifically on what is presently considered by the

scientific community to be the state of art when

homology search is necessary.

Methods based on pairwise sequence
comparisons (A1)
Sequence alignment methods are at the basis of most

of the tools that are routinely described in the

literature, and first of all, pairwise sequence compar-

ison is historically the oldest solution to the problem

of determining how distant two sequences are. Such

approaches routinely implement dynamic program-

ming, and their similarity search can be either local

(Smith–Waterman) [12] or global (Needleman–

Wunsch) [13]. Generally, the optimal match between

two query sequences is evaluated. For local similarity

search, only portions of one sequence are matched

against portions of the other. This procedure is

routinely more effective. The reason why this is so

stems from considering that proteins may have

undergone different evolutionary events, such as

duplication and fusion. As a consequence, only

certain sequence domains match each other [12].
Figure 1: A scheme of the SCOP classification proce-
dure [5].
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In order to speed up database search heuristic

approaches to identify the similarity between two

query sequences have been introduced. Among

them, BLAST [14] and FASTA [15] are the most

well known. Even though neither BLAST nor

FASTA can guarantee the optimal alignment, in

many cases they are quite fast and very effective and

as accurate as the complete Smith–Waterman [9]

algorithm. For further details on similarity matrices,

gap penalties and other related technical details when

producing alignment see any textbook of bioinfor-

matics, or the Web sites where the programs are

available [1, 11].

Methods based on profile
comparisons (A2)
In order to improve the sensitivity of the searching

algorithms, a step forward was made when the

profile representation of the sequence was intro-

duced [16]. A sequence profile accounts for position-

specific information which in many cases is obtained

by pairwise-aligning similar sequences against that of

interest, using local or global algorithms. At the end

of the process, for each position of the sequence of

interest it is possible to compute the frequency of

each residue type in that position (Figure 2).

A profile can therefore be considered as a matrix

whose rows are as many as are the features adopted

(in sequence profile the feature number is routinely

twenty as the number of residues) and whose

columns are the residue positions in the sequence.

The most interesting result when using sequence

profiles is that the score of the match is position

specific, although it takes into consideration the same

scoring matrix adopted for sequence–sequence

methods. This is due to the fact that aligned

sequences contribute differently to the score depend-

ing on the residue positions (for instance, two

alanines in different chain positions can be repre-

sented by different column profiles). Profile methods

are more sensitive than single-sequence comparison

approaches since they summarise the evolutionary

history of a family, identifying more and less

conserved positions along the protein chain [5].

Figure 2: An example of sequence profile.
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We can distinguish three different sequence–

profile-based approaches: (i) a query profile versus a

database of sequences; (ii) a query sequence versus a

database of profiles and (iii) a query profile versus

a database of profiles. In the first case, one of the

most popular and effective approaches is the Position

Specific Iterated-BLAST (PSI-BLAST [17]).

PSI-BLAST starts with a simple sequence query

versus a database of sequences, and iteratively builds a

query profile using similar sequences found during

the previous run. It stops when no more sequences

are retrieved or after a preset number of iterations.

PSI-BLAST is an extremely sensitive comparison

tool that highlights homologies between sequences

that can be retrieved only with structure comparison

[18]. PSI-BLAST provides accurate statistical esti-

mates for computed similarities; it occasionally gives

good scores to unrelated sequences since the

inclusion of a non-homologous sequence in the

Position Specific Scoring Matrix (PSSM) may occur

(this occurrence is, however, very difficult to detect).

The second way of exploiting sequence profiles is

to build a library of sequence profiles and use single-

sequence queries. This is done by Integrating Matrix

Profiles And Local Alignments (IMPALA), which

have been shown to be good and complementary to

PSI-BLAST [19].

Finally, the third way is to exploit profile infor-

mation with a query profile versus a database of

profiles, by means of a profile–profile alignment.

Recently, several methods have been extended to

provide profile–profile based comparisons [20–25].

It has been reported that these methods can give

numerous examples of unrecognised sequence simi-

larities reflecting structural similarity and homology

[26]. A further improvement of profile–profile align-

ment accuracy can be obtained using a score based on

the information theory, both during the alignment

procedure [24], or as a reliability filter [25]. Evaluation

of profile–profile comparison methods suggests that

profile-profile methods can identify about 20–30%

more homologs than PSI-BLAST [2, 26].

Methods exploiting structure
information (A3)
In this group of methods, we can include approaches

that build 3D structural profiles [27], methods that

use secondary structures together with the primary

sequence [28–31] and those that thread a protein

sequence into the structures of known proteins

[32–34]. Most of these methods were originally

developed to predict ab initio the protein structures;

however, they proved to be quite valuable in

detecting remote relationships.

And, 3D profiles [27] extend the notion of

sequence profile using information about the spatial

environments of the protein residues. The most

common environments are described by: (i) the area

of the residue buried in the protein and inaccessible

to the solvent, (ii) the fraction of side-chain area

that is covered by polar atoms (O and N); and (iii)

the local secondary structure [27]. As in the case of

the protein sequence profiles, each position of the

chain can be represented by a vector of values and by

this, it is possible to score how effective are the

different environments for the different aligned

residues.

The methods that incorporate secondary structure

information take advantage of the fact that secondary

structures of proteins are more likely to be conserved

than their sequences. Hence, after predicting

secondary structure, two proteins can be aligned,

and the alignment of the predicted secondary

structures is an additional scoring function [30].

Threading One-dimensional Predictions Into Three-

dimensional Structures (TOPITS) first implemented

this approach, by defining a scoring matrix that was a

linear combination of two different matrices. The

first was the classical Point Accepted Mutation

(PAM) (or BLOcks SUbstitution Matrix

(BLOSUM)), and the second was based on second-

ary structures and relative solvent accessibility

features, both predicted for the two sequences to

be aligned. This method performed with significant

improvement over methods based on single-

sequence alignment [28]. Secondary structure pre-

diction combined with PSI-BLAST was found to

improve remote homology detection [29].

Alternatively, when protein sequences have very

low sequence identity, secondary structure informa-

tion can help to improve the alignment quality

(you may try YAP at gpcr.biocomp.unibo.it/cgi/

predictors/aligns/aligns.cgi). It is also possible to

consider the scoring systems that include residue

solvation/burial values [35, 36], and in this case

profile–profile alignment methods have been accord-

ingly extended to take into account also secondary

structure alignment [37].

Several threading methods have been developed

with the main purpose of protein structure predic-

tion at low sequence identity [32–34, 38, 39]. These

methods are all based on the notions that protein
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folds are limited in nature and that a sequence can fit

to a set of representative folds with different scores.

Optimising the procedure gives also the possibility

of finding distantly related homologs among the less

scoring templates [38].

Machine-learning approaches (A4)
There is an entire group of methods, based on tools

first developed within the artificial intelligence/

machine-learning community, including Hidden

Markov Models (HMMs), Neural Networks (NNs)

and Support Vector Machines (SVMs). These

methods have been successfully applied to the

remote-homolog detection problem. HMMs and

NNs can be considered non-linear statistical data-

modelling tools that can be ‘trained’ (parameterised)

to model complex relationships between inputs

and outputs or to find patterns in data; SVMs in

turn excel at classification tasks [40].

An alternative way of building sequence profiles is

by means of HMMs [41–45]. The main advantage

is then that HMMs rely on a solid probabilistic

framework and that they can derive from examples

not only position specific scores, but also position

specific gap penalties. One of the most widely used

resources that apply HMMs to find remote homo-

logs is the Protein Families (PFAM) database [46].

The ability of HMM and NN to model complex

and unclear relationship between data even of

heterogeneous nature, is at the basis of several

methods that exploit both sequence- and structure-

related information. These approaches use

a machine-learning tool either as the core of the

scoring system that evaluates the quality of align-

ments generated using different methods [47, 48] or

as generative models that both map and score the

alignments between the target and template

sequences [49].

In the previous years, SVMs became one of the

most widely adopted approach to address several

problems of computational biology, including

remote homology search [50–57]. The main differ-

ence between different implementations consists

in the kernel function that measures the similarity

between any pair of examples. Different kernels

correspond to different notions of similarity and

can lead to discriminative functions with different

performance.

The basic idea of the kernel-based approaches is

to use the sequence comparison methods (sequence-

sequence alignments, profile-based, HMMs and

others) in order to compute a vector of values

representing each sequence. Then, exploiting the

SVM learning feature, it is possible to improve the

classification and the detection of remote homologs.

In practice, different from other approaches that

only rely on positive examples, SVMs also add to

different methods the ability of learning from

negative examples and of discriminating among

the positive and negative class [53]. Despite their

efficacy in detecting remote sequence relationships,

these methods, however, were not constructed

to improve the alignment between the query and

the target proteins, and so far the problem is still

unsolved [5, 11].

Consensus-based approaches (A5)
This category comprises the so-called ‘metaservers’

that have proved to be highly successful in the more

recent editions of the CASP experiment [58, 59]

where it was shown that the accuracy of remote-

homologs detection is improved when different

methods are combined to generate a consensus

model. Many systems are currently available and they

differ both in the number and type of approaches

selected as jury components, as well as in the jury

implementation [60–63]. The underlying philosophy

is, however, the same: these methods leverage

on the results provided by other methods, often

obtained from remote web servers (thus the name of

‘metaserver’ [64]), such as the one described in

the preceding sections. These results are then fed as

input to the metaserver scoring system, such as

a NN, that selects which of the input prediction is

the most reliable for the case under examination.

Structure-Structure comparison (B)
Even though modern sequence-based methods

significantly improved the single-sequence search

algorithms, they still fail to correctly identify

similarities that can be identified through 3D

structure alignment. Programs such as SARF [65],

Combinatorial Extension (CE) [66], DALI [67],

Structural [68], VAST [69], FAST [70] and

MAMMOTH [71] have the great advantage of

using atomic coordinates for both query and target

proteins. Considering that a clear agreement about

what is the best structural alignment is still lacking,

methods based on structural alignments adopt

different rules. For example, some of them require

that the matching protein portions have to be topo-

logically connected in the same way [66, 68, 69, 72];
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instead, others search for matching regions that are

not necessary topologically connected in the same

way [65, 67]. The extent of the difference in

performance, however, largely depends on both the

level of specified selectivity and how the overall

performance is computed.

It is worth noticing that the performance of

methods comparing protein structure cannot be

totally discriminated from that of sequence-based

methods [5, 11, 25]: as a general consideration, the

first ones perform better, but sometimes the last ones

are similarly performing, and the solution is therefore

problem-dependent.

To summarise, and according to the data

presently available in the literature, structure

comparison is better than profile–profile comparison,

which is, in turn, better than profile–sequence

comparison, which is in turn better than sequence-

sequence comparison. However, in some cases, the

profile–profile performance was higher than that

of structure comparison [25]. An example of this rule

of thumb is depicted in Figures 3A–D (evaluated also

using MaxSub [72]). For the specific case at hand,

it is shown that the alignment obtained using

sequence against sequence (Figure 3A) is worse that

that obtained using profile versus sequence

(Figure 3B); in turn, this is worse than that obtained

with profile against profile (Figure 3C); finally, this

last alignment is comparable to that obtained with

the CE structural comparison program (3D).

Figure 3: (A) Alignmentobtainedusing sequence against sequence for theyeast transcription regulatorMAT A1and
its counterpart ALPHA2 (1AKH chains A and B, PDB code) following the procedure previously described [25].
RMSD¼ routemean square deviationbetween theCAcoordinates.COV¼ coverage of the alignment (i.e. thepercen-
tage of aligned residues).MS¼MaxSub score as described in Reference [71]. ID¼ percentage of identical aligned resi-
dues. (B) Alignment obtained using sequence against profile. For legend, see Figure 3A. (C) Alignment obtained using
profile ^profile alignment. For legend see Figure 3A. (D) Alignment for the same protein pair of Figure 3A and C
obtainedwith CE [65].For legend see Figure 3A.
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MEASURINGTHEMETHOD
RELIABILITY
In order to assign statistical meaning to the scores

obtained with the different methods it is also

mandatory to estimate what is the chance that

a given score could have been obtained also with

unrelated pairs of proteins (baseline predictors). One

of the most widely adopted ways is to compute the

alignment scores with the extreme value distribution

[73]. The assumption is that unrelated sequences

have local alignment similarity scores that are very

accurately described by mathematical models of

random sequences. Since unrelated sequences have

similarity scores that are indistinguishable from the

scores of random sequences, statistically significant

similarities derive from homologous sequences.

A good estimation of reliability can also reduce the

number of false positive hits and increase the quality

of searching methods. It is interesting to consider that

at the last CASP experiment (CASP6) [58], all the

groups that adopted a combination of the methods

described earlier (about 10 different groups) with

the aid of large computational resources were well

performing on the 38 targets that were predicted.

This obviously does not guarantee that for specific

problem at hand the solution will be successful

simply by considering a submission to any of the

best performing servers at CASP6 (for a detailed

descriptions of the methods and their performance,

see [58]).

CONCLUSIONSAND
PERSPECTIVES
In the previous years an increase of accuracy in the

detection of the remote homologs was reported.

This is particularly true for the detection of the

closest homologous proteins (if any) in a given data

set. However, it is still necessary to improve the

results of algorithms capable of aligning remote

homolog protein sequences starting from a correctly

selected protein pair [5]. Recently divergent evolu-

tion within protein superfolds was inferred with

sequence profile-based phylogenetic techniques [74].

This suggests that profile-based phylogenetic

methods, often adopted for protein function predic-

tion can also be applied for remote homolog

identification.

Another relevant, somewhat related problem, that

deserves a special attention ‘per se’, is the detection of

remote homologs among membrane proteins. This is

due to the fact that these proteins are very difficult

to solve with atomic resolution, due to technical

problems, so that they are under-represented into the

database of protein structures [75]. In recent years,

several methods have been proposed to predict the

topology of membrane proteins, i.e. the position of

the transmembrane domains that span the bilayer

(either � helices or � strands) along the protein chain

and the position of the N and C terminus with

respect to the membrane plane [76]. Also new types

of web products have been described in order to

include diaries and protocols into the computational

web experiments [77]. Even though these methods

have been built to assign membrane protein

topology, they can be also applied to detect remote

homologs in prokaryotic genomes with quite high

reliability [78]. This suggests that with the increase of

membrane protein examples in the near future, a

specific class of membrane protein remote homolog

detectors can be generated and compared to already

available large scale predictions [79].
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Key Points
� Whento searchfordistantlyrelatedhomologs? Whenwe areunlucky

and after sequence alignment we do not find any sequence with
somereliable similarity (25% identity) to our petproteinwith an
already known 3D structure.

� Why to search for distantly related homologs? Because we want to
infer structures, functions of phylogenetics relationships.

� Where to search for distantly related homologs? In the sequence and
structure protein space thatwe know, thanks to the effort of all
the experimentalists, namely in the databases of known protein
sequences and structures.

� How to search? This is still an open question and an active
research field. Several methods based on improved alignment
procedures, machine learning approaches, chemicophysical
principles and combinations of them are routinely used and
developed.

� Protein structures are more conserved than protein sequences.
In detecting remote homologs, structure comparison is better
than profile ^profile comparison, which is in turn better than
profile ^ sequence comparison, which is, in turn, better than
sequence^ sequence comparison.
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