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Abstract

This paper reports the evaluation of predictions for the “CALM1” challenge in the

fifth round of the Critical Assessment of Genome Interpretation held in 2018. In the

challenge, the participants were asked to predict effects on yeast growth caused by

missense variants of human calmodulin, a highly conserved protein in eukaryotic cells

sensing calcium concentration. The performance of predictors implementing different

algorithms and methods is similar. Most predictors are able to identify the deleterious

or tolerated variants with modest accuracy, with a baseline predictor based purely on

sequence conservation slightly outperforming the submitted predictions. Never-

theless, we think that the accuracy of predictions remains far from satisfactory, and

the field awaits substantial improvements. The most poorly predicted variants in this

round surround functional CALM1 sites that bind calcium or peptide, which suggests

that better incorporation of structural analysis may help improve predictions.

K E YWORD S

CAGI, calmodulin, disease, missense variants, predictors

1 | INTRODUCTION

The Critical Assessment of Genome Interpretation (CAGI), round

five, is aimed to provide an objective evaluation of computational

methods for predicting phenotypic impacts of genomic variations.

There are 14 challenges in round five, and we present here

the assessment of challenge called “CALM1.” In this challenge,

fitness scores were provided by a complementation assay

developed in Fritz Roth’s Lab. The assay evaluated the ability of

human calmodulin (CALM1) missense variants to rescue a
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temperature‐sensitive mutation of the yeast ortholog CMD1

(Weile et al., 2017). Conceptually, the fitness score represents

the relative growth rate of yeast with CALM1 missense variants

to that of yeast with wild‐type CALM1. Thus, the deleterious

missense variants have fitness scores closer to 0 and tolerated

variants have fitness score closer to 1. In the challenge,

participants were asked to predict fitness scores for 1,813

missense variants of CALM1. Although the exact values of

experimental fitness scores were not given, the distribution was

provided to help normalize predictions.

CALM1 is a calcium‐sensing protein that modulates the

activity of a large number of proteins in the cell. It has dumbbell‐
shaped structure composed of two globular domains connected

by a flexible linker (Babu, Bugg, & Cook, 1988). Each globular domain

has two calcium‐binding motifs that make up an EF‐hand. As a

calcium sensor, calmodulin is involved in numerous cellular pro-

cesses, and is especially important for the normal function

of neuron and muscle cells. Its variants have been found to be

causally associated with two diseases, ventricular tachycardia,

catecholaminergic polymorphic, 4 and long QT syndrome 14 (Boczek

et al., 2016; Nyegaard et al., 2012; Yu et al., 2016). Choosing

calmodulin as a target to assess the current state‐of‐the‐art in

computational methods for variance prediction has a

couple of advantages. First, calmodulin is ubiquitous in most

eukaryotic cells (Stevens, 1983) providing numerous sequence

homologs for sequence analysis. Second, numerous structures of

calmodulin complexes are available (Drum et al., 2002; Meador,

Means, & Quiocho, 1992; Shen, Zhukovskaya, Guo, Florian, & Tang,

2005). These structures aid in understanding the functional

relevance of mutations. Third, various studies have been done to

decipher how calmodulin is involved in different pathways (Berchtold

& Villalobo, 2014; Parry & June, 2003; Sorensen, Sondergaard, &

Overgaard, 2013; Stull, 2001). Overall, the abundance of existing

knowledge for calmodulin permits various methods to be applied,

and, thus, is a good target for evaluating computational methods.

Current predictors can be divided into following three main types

according to their features: (a) prediction based on sequence

conservation; (b) incorporation of both sequence and structural

information; (c) integration of predictions from several predictors.

We received seven predictions from four groups, which include all

three mentioned types of methods. The predictors included two

published methods: Evolutional Action (group 1) (Katsonis & Lichtarge,

2014) and INPS3D (group 3; Savojardo, Fariselli, Martelli, & Casadio,

2016). Group 2 used average values from PhD‐SNP (Capriotti,

Calabrese, & Casadio, 2006), PANTHER (Thomas et al., 2003), and

SNPs&GO (Calabrese, Capriotti, Fariselli, Martelli, & Casadio, 2009)

and group 4 used molecular dynamics. The assessment shows that all

predictors except group 4 are capturing qualitative (e.g., deleterious vs.

tolerated) effects of variants on proteins. However, the quantitative

agreement between predictions and experimental measures remains

modest. Most predictors are able to differentiate deleterious variants

and tolerated variants. However, the accuracy of the exact values is

waiting for substantial improvements.

2 | MATERIALS AND METHODS

2.1 | Positive control and the baseline predictor

As in CAGI4, we defined a positive control and a baseline predictor.

The positive control consists of fitness scores for each variant

randomly drawn from an assumed Gaussian distribution with the

given fitness score as mean and the experimental standard error as

standard deviation. The baseline predictor was based on the

frequency of amino acids at each position in a CALM1 multiple

sequence alignment (MSA). About 1,133 ortholog/inparalog se-

quences of calmodulin were extracted from orthoDB (Kriventseva

et al., 2015) at the metazoa level and were aligned using Promals3D

(Pei & Grishin, 2014). The original predicted score for each variant

was calculated using the following formula:

−
Q
P

Q
P

ln lnm

m

w

w

where Qm and Qw are the estimated probabilities of mutated and

wild‐type amino acids at a mutated position in the alignment as

defined in, and Pm and Pw are Robinson‐Robinson background

frequencies of the mutated and wild‐type amino acids. The original

predicted scores were normalized according to the distribution of

experimental fitness scores.

2.2 | Quantile transformation of original
predictions

Although the distribution of experimental fitness scores was

provided, most participants did not calibrate their predictions using

it. Thus, normalization of predictions was required to make

predictors comparable in their scale, which is especially important

for numeric comparison. We performed quantile transformation of

the original predictions from participants and of our baseline

predictor. Because predictors were not allowed to predict negative

values, all negative competitive growth scores were shifted to 0

before transformation. The variants were ranked by the predicted

values, and each variant was assigned the experimental score with

the same rank. The assigned experimental scores for mutants that

are predicted to be ties are further averaged to obtain the final

transformed predictions.

2.3 | Measures for prediction assessment

Each predictor was evaluated by their ability to (a) classify variants

into categories such as deleterious and nondeleterious variants

(classification), (b) to rank variants by their impacts on yeast fitness

(ordinal association), and (c) to predict experimental fitness scores

(numeric comparison). For the assessment, variants were assigned to

the following categories by their experimental fitness score: Less

than 0.3 for deleterious, between 0.3 and 0.8 for intermediate, and

from 0.8 to 1.0 for wild type. Table 1 summarizes all scores used for

the evaluation.
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2.4 | Evaluation of overall performance and its
statistical significance

Four of the measures listed in Table 1 (i.e., the three ordinal

associations and the AUC) are purely based on rank and are not

sensitive to the distribution of numeric values. Five others depend on

the distribution of numeric values and thus were calculated with both

original and quantile‐transformed predictions. For each measure, we

transformed the original scores to Z‐scores, and positive control and

baseline predictor were excluded from the calculation of mean and

standard deviation of original scores to avoid their influence on the

score distribution. The average Z‐scores of the rank‐based, original‐
value‐based, and transformed‐value‐based measures were computed

and summed up to be the final score to assess the performance on

each subset.

To take experimental errors into consideration, we assumed

that the fitness score for each variant can be randomly drawn from

a Gaussian distribution defined by the reported fitness score and

the standard error. We simulated 50 datasets using the above

method. Then, we performed bootstrap resampling on each

simulated dataset 100 times, and thus generated 5,000 mock

datasets. We obtained the distribution of ranks for each group on

5,000 mock datasets.

3 | RESULTS

3.1 | Most variants have minor or no effects on
yeast survival

The distribution of experimental fitness scores of variants is

depicted in Figure 1. Negative fitness scores were shifted to 0,

as the challenge requires nonnegative predictions. A majority of

variants are either detrimental or tolerated, and thus the

distribution is bimodal. About 71% of variants with fitness scores

equal to or above 0.6 and 56% of variants with fitness scores equal

to or above 0.8, suggesting variants are biased toward being

tolerated to yeast survival.

TABLE 1 Summary of measurements in assessments

Classification

Area under ROC ( − )P X X1 0

X ,1 predicted score for positive instance; X ,0 predicted score for negative instance. The area under the curve is equal to

the probability that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative

one

MCC ( × − × )/ ( + )( + )( + )( + )TP TN FP FN TP FP TP FN TN FP TN FNi i i i i i i i i i i i ,

i ∊ (deleterious, intermediate, tolerated); TP: true positive; TN: true negative; FP: false positive; FN: false negative.

F1 ( ∙ ∙ )/( + )2 precision recall precision recall ,

= /( + )precision TP TP FP ; = /( + )recall TP TP FN

TP: true positive; TN: true negative; FP: false positive; FN: false negative.

Ordinal association

Kendall’s τ‐b rank

correlation
( )( − )/ ( − )( − ) = ( − )/ = ∑ ( − )/ = ∑ − /n n n n n n n n n n t t n u u n, 1 2; 1 2; 1 2; ,c d k k k j j j c0 1 0 2 0 1 2 the number of

concordant pairs; nd , the number of discordant pairs; n, the total number of pairs; tk , number of values in the kth group

of ties by predictions; uj, number of values in the jth group of ties by experimental scores.

Spearman’s rank

correlation
( )/σ σR Rcov , R Rpred exp pred exp

( )R Rcov ,pred exp , covariance between predicted and experimental ranks of mutants; σRpred and σRexp, standard deviations

of predicted and experimental ranks, respectively. Ties were randomly assigned distinct ranks first and then the

average of these ranks were assigned to each of them.

Numeric comparison

Pearson's correlation ( )/σ σcov pred, exp pred exp

( )cov pred, exp , covariance between predictions and experimental scores; σpred, standard deviation of predictions; σexp,

standard deviation of experimental scores

RMSD ( )∑ −
=

pred exp
N j

N
j j

1
1

N, the size of a data set; predj, jth predictions; expj , jth experimental scores

Value agreement test ∑ Ci

is the percentage of mutants with the difference between the predicted and experimental growth scores below a

certain cutoff i. The cutoffs are taken from 0 to 1 with an incremental of 0.01. The area under curve was used as

measurement.

Abbreviations: RMSD, root‐mean‐square deviation; ROC, receiver operating characteristic.
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3.2 | Functional suggestions of variants

The calmodulin gene CALM1 encodes a Ca‐binding protein with two

tandem EF‐hand domains. CALM1 structures adopt various different

conformations in response to Ca, and provide selectivity for

interacting with cellular targets to drive a wide range of biological

processes (Bhattacharya, Bunick, & Chazin, 2004). CALM1 achieves

specific recognition of these targets by adopting multiple conforma-

tions with and without bound Ca. Figure 2a,b highlight two

such alternate conformations. The calmodulin EF‐hands bind to the

IQ domain of the Ca(v)1.2 Ca2+ channel in a compact parallel

conformation (peptide2 binding mode, Figure 2a), with both domains

F IGURE 1 The distribution of

experimental fitness scores and
predictions. The 3D plot depicts the ratio
(Y‐axis) of fitness scores (X‐axis) from
experiment (exp) and all participants
(depth axis). All negative fitness scores and
predictions are shifted to 0, as the

challenge requires nonnegative predictions

F IGURE 2 CALM1 Ca‐binding functional residue mutations exhibit redundancy. Calcium binding sites are labeled numerically (Ca1‐Ca4) and
colored according to primary sequence order. Calmodulin structures are colored in rainbow from the N‐terminus (blue) to the C‐terminus (red).
(a) Compact calmodulin structure conformation depicts Ca‐dependent binding to the hydrophobic IQ domain (pink cartoon, peptide2 mode) of

the cardiac Ca(v)1.2 calcium channel (PDB:2f3y). (b) Extended calmodulin structure conformation depicts Ca‐dependent binding to the
inactivation gate DIII‐IV linker (magenta cartoon, peptide1 mode) of the cardiac sodium channel (Na(V)1.5) (PDB: 4djc). (c) Experimental
competitive fitness scores (unscaled) for Ca‐binding site mutations diverge from wild‐type (green section) through intermediate (yellow section)

to detrimental (red section)
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binding the peptide through hydrophobic surfaces (Fallon, Halling,

Hamilton, & Quiocho, 2005). Calmodulin binds the inactivation gate

(DIII‐IV linker) of the cardiac sodium channel in an alternate

extended conformation (peptide1 binding mode, Figure 2b), with

the CALM1 C‐lobe contacting the bound peptide.

Each of the structures binds four Ca2+ ions, with each site using

four key acidic residues. The experimental fitness scores for multiple

mutations at these Ca‐binding sites are plotted in Figure 2c. While a

few mutations of key Ca‐binding residues are detrimental, most

exhibit intermediate and high (tolerated) fitness. This skewed fitness

distribution of functional mutations suggests that Ca binding might

be redundant. Indeed, fitness scores mapped to the extended CALM1

structure highlight the extreme difference between minimum scores

measuring detrimental mutations (Figure 3a), mean scores high-

lighting a broader range of fitness levels (Figure 3b) with respect to

the peptide1 binding mode. The distribution of minimum mean and

maximum fitness scores for residues contacting peptide in both

binding modes, peptide1 binding mode and peptide2 binding mode

are plotted in comparison to the same distributions of Ca binding

residues (Figure 3c). The distributions suggest that peptide1 binding

mode might contribute more to fitness than peptide2. The relatively

lower fitness of the C‐terminal Ca binding residues, which contribute

to peptide1 binding, also support this notion.

3.3 | Predictions and experimental fitness scores
have disparate distributions

We also plotted the distribution of predicted fitness scores of each

participant in Figure 1. Unfortunately, most participants did not

normalize their predictions according to the given distribution of

experimental fitness scores. The Kolmogorov‐Smirnov test indicates

that only predictions from group 1 replicate the experimental

distribution (p > .05), and the distribution of predictions from group

2‐1 is most dissimilar to the experimental distribution. Group 2‐1
predicted most variants to have mildly deleterious effects on yeast

fitness, with few variants predicted to be tolerated. Considering that

different scales of predictions may bias evaluation and conceal the

real capacity of predictors to detect the effects of variants, we

applied quantile transformation of predicted values of each group to

make the results comparable with each other.

3.4 | Overall performance of predictors is
comparable and far behind accuracy

A similar evaluation strategy (Table 1) as CAGI4 is applied to

the predictions from this round to assess the ability of methods

to (a) classify variants, (b) rank variants by their effects on fitness,

F IGURE 3 CALM1 peptide binding site mutations exhibit diverse fitness consequences. Extended CALM1 conformation displayed in surface
representation bound to peptide 1 (yellow cartoon). CALM1 residues are colored by scale from damaging (red) to tolerated (blue) competitive
fitness score. (a) CALM1 colored by the minimum competitive fitness score per site. (b) CALM1 colored by the mean competitive fitness score

per site. (c) Experimental competitive fitness scores for residues interacting with both peptide binding modes (red), peptide1 binding mode
(blue), and peptide2 binding mode (green) on the left are compared to the Ca‐binding residues on the right (grey background, same coloring as in
Figure 2c). Maximum fitness scores (square symbols), mean fitness scores (triangle symbols), and minimum fitness scores (diamond symbols) per
residue position are indicated by a solid line for the respective average over each category of binding mode residues
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and (c) numerically predict fitness scores of variants. The

performance of the predictors on each measure is shown in

Table 2. All participants except group 4 show significantly better

than random predictions where the best performing group exhibits

a Kendall’s τ correlation of 0.17. As in the previous CAGI4 round, a

baseline control calculated from amino acid frequency in a multiple

sequence alignment has comparable and even slightly better

performance with the other predictors in this challenge. However,

the baseline control stands out more with respect to quantitative

metrics as compared to qualitative measures. Group 1, group 2 and

the baseline predictor are on par with each other in their ability to

rank variants’ effects on yeast fitness. Group 2 marginally

outperforms the other two, but the worse original numeric

predictions make it rank behind. When comparing group 1 and

the baseline predictor, whose prediction distributions resemble

the experimental fitness score distribution more closely, the

baseline predictor outperformed group 1 in classifying deleterious

variants using either original predicted values or rescaled

predicted values as criteria. These results suggest the baseline

predictor has surpassing ability to identify extremely detrimental

variants.

To access the significance of our evaluation, we simulated

5,000 datasets by assuming a Gaussian distribution of fitness

scores of each variant and using the experimental fitness score and

standard error as mean and standard deviation for the distribu-

tion, respectively. For each simulated dataset, we calculated

assessment measures and obtained a Z‐score for each prediction.

The distributions of Z‐scores of predictors (Figure 4a) do not show

clear separation and cover similar range, suggesting comparable

performance of several predictors. A striking gap between all

predictors and the positive control suggests substantial improve-

ments are needed for accurate predictions. Consistent with Z‐

score results, the distribution of ranks on 5,000 simulated datasets

exhibits a tie between the baseline predictor and group 1 (Figure

4b). Intriguingly, both predictors (baseline and group 1) normalized

their predictions to the distribution of experimentally determined

fitness scores.

3.5 | Modest performance for predicting
deleterious and wild‐type variants

Differentiating deleterious variants and tolerated variants in silico

is considered the major challenge for current computational

methods. Thus, we specifically evaluated predictors’ ability to

identify deleterious (fitness score <0.3) and tolerated (fitness

score > = 0.8) variants. A receiver operating characteristic (ROC)

curve exhibits the diagnostic ability of predictors to classify

variants into deleterious or tolerated. The area under ROC curve

indicates the probability that a predictor will rank a randomly

chosen positive instance higher than a randomly chosen negative

one. The ROC curves for group 1, 2 and the baseline predictor are

tangled together suggesting equivalent performance in classifying

deleterious variants (Figure 5). The higher true positive rate at the T
A
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beginning of the ROC (low false positive) for the baseline predictor

implies the most detrimental variants predicted by baseline

predictor are more likely to be truly detrimental compared with

other predictors. We also calculated Matthews correlation

coefficients (MCCs) to evaluate predictors’ performance to classify

deleterious or tolerated variants. MCC for classifying tolerated

variants of group1 and group2 is higher than that for classifying

tolerated variants of two groups, indicating that the predictors are

more reliable in detecting tolerated variants (Table 2).

3.6 | Inaccurate predictions on calcium‐binding
sites and peptide binding sites

The average performance of predictors for each position along the

primary sequence of CALM1 is shown in a heatmap (Figure 6a),

scaled from green (good performance) to red (poor performance).

The performance of predictions around calcium‐binding sites is below
average. Variants for calcium binding site residues were predicted to

be detrimental by most predictors, yet most variants did not exhibit

F IGURE 5 Receiver operating
characteristic curve showing performance
of predictors for predicting deleterious
variants. baseline, baseline predictor;

positive, positive control

F IGURE 4 Statistical robustness of Z‐
scores and rank of predictors. The boxplots
illustrate the confidence interval of (a) Z‐
scores and (b) rank of predictor

performance. The red lines indicate the
median of Z‐scores/rank, the boxes extend
from first quantile to the third quantile and

whiskers show the 95% confidence interval
range. baseline, baseline predictor;
positive, positive control
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obvious effects on yeast growth (Figure 2c). For example, position

D21 is one of the sites where most of variants’ effects are poorly

predicted. D21 coordinates Ca in the first EF‐hand Ca‐binding motif

and is conserved among vertebrate CALM1 orthologs. Given this

conservation and contribution to function, the lack of detrimental

variants at this position is surprising and might suggest that the first

Ca binding site in human CALM1 does not contribute to fitness in

the yeast complementation system.

Meanwhile, a number of CALM1 variants were generally

predicted as tolerated, but they exhibited detrimental experimen-

tally determined competitive fitness scores (Figure 6b–d). One of

these poorly predicted variants, Q136M, maps to the C‐terminal

EF‐hand lobe near the Ca binding site (within 4 Å, Figure 6b). This

residue displays relatively low conservation and does not

coordinate the Ca in the extended structure, which likely resulted

in the tendency for tolerated predictions. However, the experi-

mental fitness score for this variant was zero, suggesting that the

swap from a polar side chain to a hydrophobic one is detrimental.

The backbone of this residue coordinates Ca and perhaps requires

a polar side chain interacting with the surrounding solution to

adopt the correct orientation.

Two relatively conservative variants of aromatic side chains to

hydrophobic ones (F13M and F69M) were also predicted by the

community as tolerated. While they do not bind peptide1 in the

extended conformation of calmodulin bound to a peptide from

the cardiac sodium channel (Na(V)1.5, Figure 6c), they do interact

with peptide in an alternate peptide2 binding mode (Figure 6d). The

wild type aromatic side chains form π‐stacking interactions with

aromatic residues from the peptide, potentially explaining the

detrimental effect of the variants. An additional poorly predicted

as tolerated variant, Q9A also interacts with the peptide2 binding

mode (Figure 6e), suggesting that the altered binding surface caused

by the variant is detrimental. Finally, the poorly predicted as

tolerated variant Y100T is also in the Ca binding site (Figure 6f).

4 | DISCUSSION

4.1 | Fitness scores from yeast complementation
assay can be double‐edged

Datasets for evaluating mutation fitness are one of most important

factors contributing to the conclusions of the assessment. Many

F IGURE 6 Poorly predicted variants. (a) Heatmap of average performance of predictors on each position. The averages of absolute
difference between predictions and experimental fitness scores were colored from low (green) to high (red) for each position (b) CALM1

extended conformation (PDB 4djc) C‐terminal EF‐hand lobe is colored in rainbow by residue conservation from blue (variable) to red
(conserved). Ca (green sphere) and Peptide1 (magenta cartoon) binding site are near intermediate conserved residues. Q136M (sticks) was
generally predicted as tolerated, yet resulted in a competitive fitness score of zero. (c) CALM1 extended conformation N‐terminal EF‐hand
lobe depicted as in A shows position of intermediate F13M (stick) and conserved F69M (stick) in site lacking peptide. (d) Zoom of F13/F69
site (red stick) in CALM1 with peptide2 (PDB:2f3y). Both mutations were predicted as tolerated but had detrimental fitness (zero). (e) Zoom of
Q9A (red stick) near peptide2 (magenta cartoon) and (f) zoom of Y100T (red stick) near Ca highlight additional tolerated predictions that were

experimentally detrimental
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predictors are trained using public datasets such as OMIM

(Amberger, Bocchini, Schiettecatte, Scott, & Hamosh, 2015), dbSNP

(Sherry et al., 2001), and ClinVar (Landrum et al., 2018) or directly

extract variant information from them. Thus, using public datasets for

evaluation may have the following disadvantages: (a) biased assess-

ment; (b) overly optimistic performance; (c) inability to extend

functional effects to new variants; (d) errors in public databases

(Coovadia, 2017; Grimm et al., 2015).

To overcome these shortcomings, the CAGI committee provides a

new experimentally determined dataset of variant fitness that is not

yet available to the public. This dataset will not have significant

overlap with training data used by existing predictors and the large

number of missense variants will reveal full capacity of predictors to

predict functional effects caused by new variants. However, such

datasets do not come without risks. Although yeast and human share

a striking number of orthologs and biological pathways, there are

numerous human proteins without equivalents in yeast. Some

interactors with human calmodulin may be absent in yeast. Human

is composed of organs that consist of differentiated cells with

disparate functions, but yeast is a single‐cell organism. While the

yeast complementation assay uses rescue of loss of the yeast

ortholog in yeast as criteria to judge effects of variants, calmodulin

variants in human may affect other phenotypes unique to higher

organisms, such as muscle contraction. In the yeast rescue assay,

human calmodulin must interact with partners that have diverged

considerably. Thus, the variants which are pathogenic or benign for

human may not show the same effects in yeast and vice versa. For

example, several disease‐related variants in human (N54I, N98S, and

E141G) with yeast‐derived fitness score very close to 1. Thus, the

experimentally determined fitness scores did not capture some

variants contributing to human disease.

4.2 | Several predictors show comparable
performances and are slightly better than others

Although predictors participating in the challenge use different

methodologies, not a single group significantly outperformed the

others. The baseline predictor and group 1 perform slightly better,

with both concentrating on sequence conservation and amino acid

frequency. However, they are also the only predictors that normal-

ized predictions according to the experimental distribution. Thus,

their better performance may be due in part to good normalization.

Group 2 incorporated predictions from several published predictors

by using their average prediction values. This method shows a

marginally higher value in Kendall’s τ correlation, Spearman’s rank

correlation coefficient and area under ROC curve for detecting

deleterious variants. Thus, incorporation of predictions from several

methods may provide a strategy for improving performance in the

future. However, how to integrate predictions from various sources

to obtain a significantly finer prediction is unclear.

Group 3 used a published predictor called INSP3D, which is

designed to predict protein stability change upon single point

mutation from sequence and structures. Its performance is worse

than the baseline predictor, group 1 and 2, as it is possible that many

variants on calmodulin affect protein‐protein interactions or protein

conformational changes instead of protein stability. Therefore, its

performance in this challenge may not reflect its real ability to

predict protein stability change. Group 4 is the only group with worse

than random predictions. It has 20% predictions that are anti‐
correlating, due to which the overall performance indicators become

poor. Group 4 used molecular dynamics to estimate the change in the

flexibility profile of a mutant with respect to that of the wild type

structure. They hypothesized this change is proportional to the

change in the function of a mutant.

4.3 | The performance of predictors decreased
compared with CAGI4

As assessors for both CAGI4 (Zhang et al., 2017) and CAGI5, we noticed

that the performance of predictors did not improve in this round. In fact,

performance of predictors was slightly worse than in the previous

round. This disappointing trend is possibly due to the small number of

participants or the short time for observing improvements of methods

since the last challenge. The median Kendall’s τ correlation coefficient

for the CALM1 challenge was 0.15, as compared to 0.26 for CAGI4.

However, these comparisons might not accurately reflect predictor

performance, as experimental determination of fitness scores and

choice of protein contribute to the results. The CALM1 yeast ortholog

evolves faster in fungi, and despite the essentiality of calmodulin in

budding yeast, calcium‐binding EF‐hands are not required, except under

certain conditions such as elevated temperature (Geiser, van Tuinen,

Brockerhoff, Neff, & Davis, 1991). However, disease‐related variants in

human predominately surround calcium‐binding sites in the C‐terminus

(Jensen, Brohus, Nyegaard, & Overgaard, 2018). Thus, using budding

yeast as organism for testing the functional effects of variants at

calcium binding positions could be problematic, although the system

seems to work reasonably well (predicting 50% of pathogenetic variants

with 90% precision) for pathogenicity prediction (Weile et al., 2017).

A second major difference that could lead to decreasing

performance is that UBE2I and calmodulin have different interaction

behaviors. The interaction between calmodulin and various targets

involves a large interface, a buried surface ranging from 2,400 to

3,000 Å2 for calmodulin/peptide and 5,900 Å2 for EF/calmodulin

complex (Hoeflich & Ikura, 2002). A large interface may lead to

difficulty to predict the effects of missense variants on interactions. A

variant on interface may decrease the affinity but the difference may

not result in any detectable functional effects. It will be difficult to

infer quantitative relationship between reduction in affinity of

interactions and functional effects and thus results in poor predictions.
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