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Abstract

Supervised machine learning (ML) is used extensively in biology and deserves closer scrutiny. The Data Optimization Model Evalu-
ation (DOME) recommendations aim to enhance the validation and reproducibility of ML research by establishing standards for key
aspects such as data handling and processing, optimization, evaluation, and model interpretability. The recommendations help to
ensure that key details are reported transparently by providing a structured set of questions. Here, we introduce the DOME registry
(URL: registry.dome-ml.org), a database that allows scientists to manage and access comprehensive DOME-related information on
published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline
the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications,
the registry fosters a standardized evaluation of ML methods. Future plans include continuing to grow the registry through community
curation, improving the DOME score definition and encouraging publishers to adopt DOME standards, and promoting transparency
and reproducibility of ML in the life sciences.

Keywords: machine learning, standards, transparency, reproducibility

Introduction to the development of innovative and far-reaching medical appli-

Thanks to the sharp decline in cost for many high-throughput
technologies, large volumes of biological data are being generated
at a rapid pace and made accessible to researchers. In this con-
text, the field of machine learning (ML) or artificial intelligence
(Al) has risen to prominence given its applicability in data analy-
sis and creation of prediction models using large-scale biological
data, such as genomics [1] and proteomics [2] data, thus leading

cations [3].

Despite the availability of data and advances in ML/AI, the
application of supervised ML algorithms in the biological sci-
ences is still beset by several problems, leading to pitfalls in the
wider adoption and reproducibility of these methodologies [4,
5]. For example, most ML-related publications are not accompa-
nied by wet-lab experimental validation and are instead based on
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various approaches of computational assessments [6], which can
lead to bias and inaccuracy during result reporting [6]. Further-
more, good practices of supervised ML model development, aim-
ing to increase model performance and facilitate generalization
and reproducibility, are often overlooked [7, 8]. These issues un-
derscore the importance of developing a set of practical recom-
mendations regarding (i) the construction and evaluation of ML
models, considering the utilized data, optimization techniques,
and model performance evaluation, and (ii) thorough documenta-
tion of the ML development process, encompassing crucial tech-
nical details in a comprehensive and concise manner [5].

The ELIXIR Machine Learning Focus Group is part of ELIXIR,
the European infrastructure for life science data, which repre-
sents over 250 research organizations in 24 countries. Through a
community-driven consensus process that involved over 50 ML
experts, the ML Focus Group established a set of recommenda-
tions for reporting supervised ML approaches in computational
biology [9]. Collectively known as the Data Optimization Model
Evaluation (DOME) recommendations, they cover the major as-
pects in supervised ML (i.e., data, optimization, model, and evalu-
ation) in the context of scientific publications. The DOME recom-
mendations aim to enhance the reproducibility and transparency
of published ML approaches for readers, experimentalists, review-
ers, and the broader community. Key challenges such as gener-
alization to independent data, effective optimization, and model
interpretability are addressed, with an emphasis on rigorous sta-
tistical testing for accurate performance assessment. We suggest
that DOME recommendations should be used as a report accom-
panying a manuscript in its supplementary data section (e.g., [10,
11]). Currently, the DOME recommendations focus on providing a
minimal standard for reporting supervised ML models designed
for biological applications and do not extend to other ML classes
(e.g., unsupervised or reinforcement learning). A similar effort is
the AIMe registry focusing on the description of ML/AI methods
for biomedical applications [12]. At the time of writing, the AIMe
registry contains 35 entries.

Here, we present the DOME registry to facilitate the dissemina-
tion and adoption of DOME recommendations by data scientists
and practitioners, working in a wide range of biological fields. The
DOME registry constitutes a structured database that allows for
researchers to handle and manage DOME-related information on
published and unpublished ML applications, providing a unique
identifier for each publication and a DOME score. Here, we of-
fer a comprehensive overview of the structure and implementa-
tion of the DOME registry, including its connection with external
resources such as Open Researcher and Contributor ID (ORCID)
identifier [13], APICURON ([14], and the Data Stewardship Wizard
(DSW) [15], which enhances user access management and data in-
put. The user-friendly web interface facilitates access to annota-
tions and supports different user categories for managing, editing,
and publishing data. Finally, we present a use case, demonstrating
the integration of DOME recommendations and registry into the
article publishing process of a journal.

Database Structure and Implementation

Database structure

The DOME registry utilizes MongoDB, a NoSQL database, to han-
dle its data. MongoDB’s document-oriented structure allows for
dynamic and adaptable schema design, which is essential for the
evolving nature of the DOME registry. Figure 1 shows the database
schema, which is based on 2 main data structures—annotation

and user—and the relationship between these collections. The an-
notation data structure implements the specifications defined in
the DOME recommendations [9] for an annotated article. It can be
seen as an object containing many properties, which can be split
into 2 different groups. The first group contains descriptive proper-
ties for the annotation itself (i.e., unique identifier, short identifier,
creation and update timestamps, public flag, and the annotation’s
state). The second group contains the sections defined in the rec-
ommendations: dataset, optimization, model, and evaluation.

Each annotation is associated with a user (see Fig. 1). The user
object is defined by 4 properties: ORCID identifier, name, email,
and organization name (a group of users). The ORCID identifier
is uniquely issued by the ORCID authentication service. The as-
sociation between an annotation and a user is implemented by
setting the user’s ORCID identifier as a property in the annotation
object itself. The system implements 3 user roles: regular user,
user with an organization’s admin privileges, and admin. The ad-
min role has access to all annotations in the database (both pri-
vate and public) and has the authority to delete and modify them
regardless of their privacy status. Additionally, the administrator
can change the visibility of annotations from private to public. A
user with an organization’s admin privileges can modify, publish,
or delete its own annotations as well as all the annotations of that
particular organization. The regular user can only edit over their
own annotations and can view only public annotations.

Web server

Data in the DOME registry database is served to the user inter-
face through a web server implementing web Application Pro-
gramming Interfaces (APIs) compliant with the representational
state transfer (REST) paradigm. Two groups of endpoints have
been implemented: one for authentication and authorization and
the other for handling annotations.

The authentication and authorization group has 2 endpoints.
The first one redirects to the ORCID authentication service. The
second handles the ORCID authentication response, retrieves user
information, and redirects back to the user interface, filling user
data into cookies.

The annotation endpoint group implements CRUD (Create,
Read, Update, Delete) operations on annotations stored in the
registry (Table 1). Authorized users (e.g., admin) can retrieve, up-
date, delete, or insert an annotation by means of the GET, POST,
DELETE, and PATCH methods, respectively. Users can use all the
listed methods. However, the last 3 methods are available only for
the user’s own private annotations. The POST method inserts a
new annotation into the database, which will be private by de-
fault.

The server also executes a series of steps when a new annota-
tion is being inserted into the database. A timestamp and unique
identifier are assigned to the new annotation, and the DOME score
associated with it is calculated. The DOME score is computed as
the number of valid answers to the DOME recommendations, di-
vided by the total number of questions.

The API endpoints page, implemented with SWAGGER user in-
terface (Ul), describes the DOME registry endpoints to provide a
clear visual representation for developers and users. The interface
offers an easy-to-use platform for testing and future integration
with other services.

User interface

The DOME registry is accessed through a user interface [16], en-
abling users to easily search for and retrieve annotations. On the
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reviewState: string
shortid: string
owner_id: string
publication: Publication*
dataset: Dataset*
optimization: Optimization*
model: Model*
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*Publication

authors: string
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journal: string
pmid: string
title: string
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= evaluation: Evaluation*
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« algorithm: string
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« encoding: string
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« fitting: string
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« regularization: string
+ done: number

+ skipped: number

*Dataset

availability: string
+ provenance: string
redundancy: string
splits: string

+ done: number

+ skipped: number

*Evaluation
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availability: string
comparison: string
confidence: string
measure: string
method: string
done: number
skipped: number

availability: string
duration: string
interpretability: string
output: string

done: number
skipped: number

.
.

Figure 1: MongoDB schema design for the DOME registry. Rectangles of the same color represent fields within the same collection (User and
Annotation). The attributes associated with each collection are listed inside the corresponding rectangles. The “owner_id” attribute in the Annotation
document references the User document, indicating the creator of the Annotation. For Dataset, Optimization, Model, and Evaluation, there are 2
additional attributes: “skipped” and “done.” The “skipped” attribute tracks the number of fields that are either left empty or marked as “No” or “not
assigned.” The “done” attribute indicates the number of fields that are correctly filled in. These attributes are used to compute the DOME score.

Table 1: DOME registry main endpoints for accessing annotations. All endpoints must begin with the domain fragment https://registry.

dome-ml.org/api/.

Type Accessibility Description

Get Public Return all the annotations in the database. Parameter shortUID (for a specific annotation)
Post Private Store a new annotation into the database.

Delete Private Delete annotation from the database. Parameter uuid (for a specific annotation)

Patch Private Modify an annotation. Parameter uuid (to modify a specific annotation)

home page, users can view an overview of the number of entries
and users who have deposited annotations in the registry. They
can also directly access various pages, including statistics, browse,
submit, API, about, and help.

The browse page allows users to easily search through annota-
tions (Fig. 2A). On the top part, a search form allows users to input
values, while radio buttons below the text box let them sort re-
sults by criteria such as Title, Authors, Year, and DOME Score. The
system then searches across all fields in each annotation, display-
ing only those that match the search terms. Clicking on a specific
annotation opens the entry page (Fig. 2B). This page provides de-
tailed information about the publication, as well as each section
of the DOME recommendations along with the answers to each

question. It also displays the DOME score for each DOME category
and the DOME-id for referencing the specific entry.

Additionally, the statistics page presents various metrics de-
rived from public annotations through interactive plots, including
the number of annotated papers per journal, publication year, and
DOME score distribution, both overall and by section. For users
looking to contribute, the submit page features an introductory
video that guides them through creating a new annotation using
the DSW and submitting it to the DOME registry.

Users who have contributed to the DOME registry by submit-
ting annotations can sign in by clicking the button on the upper
right corner of the home page. They will be redirected to the OR-
CID authentication page, and after a successful login, they will be
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Source code and a link to the training weights have been made available at https://github.com/uw-ipd/RoseTTAFold2NA. The medel can be

Figure 2: Browse and entry pages in the DOME registry. (A) The browse page allows users to search for publications in the registry and sort them by
specific criteria. (B) The entry page displays the full details of the publication and is divided into sections (Dataset, Optimization, Model, and
Evaluation) that provide the answers to the DOME recommendations. On the right side of the entry page, there is an index with detailed information

about the DOME score for each category and the DOME-id.

returned to the DOME registry home page. The login button will
be replaced by the user's name and ORCID identifier, along with a
dropdown menu where the logout button can be found. Authen-
ticated users can also choose whether to view public or their own
private annotations by using the toggle switch next to the search
box on the browse page. Users with admin privileges can access
specific annotations through the browse page, where they have
the options to edit, delete, and publish directly from the interface.

The overall DOME registry system uses various external resources,
such as ORCID for researcher identification, DSW to streamline
the process of managing and publishing DOME-related informa-
tion, and APICURON to provide credit and recognition for biocura-
tion activities. This workflow ensures a structured and validated
approach to assessing ML applications in the biological sciences,
making it easier for users to manage, edit, and publish relevant
data through a user-friendly web interface (Fig. 3).

Users have to login to the DSW to create, share, and submit
DOME questionnaires related to a scientific manuscript. The com-
pleted questionnaire generates a JSON file containing the relevant
user and manuscript data as well as answers for the DOME fields.
A validation process is applied to the JSON file through the DOME

registry API, using the ORCID checksum to verify the validity of
the ORCID record specified by the user. Following successful val-
idation, the server calculates the DOME score for the annotation,
which is saved on the server as private. At this point, the user’s
contribution is also sent to APICURON for credit attribution.

Admin users can fully manage all annotations received
through the DSW by logging into the DOME registry using their
ORCID identifiers. They have the ability to review, edit, and delete
annotations and can choose to publish them at their discretion.
Furthermore, annotations can be assigned to groups of users
within a specific organization (organization admins, e.g., journal
publishers) who have admin roles for annotations from their orga-
nization, allowing them to determine the publication timing. Only
public annotations are accessible to all users through the DOME
registry website.

The DSW [17, 18] is a tool designed to facilitate the creation,
planning, collaboration, and execution of data management plans
based on Findable, Accessible, Interoperable, Reusable (FAIR) prin-
ciples. The tool aims to simplify the process of building a data
management plan by offering smart questionnaires that guide
users through various considerations needed for high-quality re-
search data, without requiring extensive text writing. To facilitate
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Figure 3: DOME registry workflow. Process of creating, validating, and managing DOME annotations with the integration of ORCID, DSW, and

APICURON with the DOME registry API and UL

efficient collaborative work, a customized instance of the DSW
has been developed specifically for the DOME registry (DOME-
DSW), accessible via [19]. This customized version of DSW en-
ables users to address the set of questions relevant to a particular
manuscript in accordance with DOME recommendations. Further-
more, additional information such as the user’'s ORCID identifier,
email address, and manuscript details are required. Users are al-
lowed to create, share, and modify annotations and, upon com-
pletion, submit them to the DOME registry in JSON format (see
Fig. 1).

ORCID serves as a component that provides an authentication ser-
vice and a unique identifier for researchers. It is used within the
API Submission Service to verify the identity of contributors and
associate them with their published and unpublished works. By
integrating ORCID profiles, the system ensures accurate and reli-
able attribution of user data and annotation contributions, facili-
tating the management and validation of user-generated content
within the DOME registry.

APICURON (14, 20] is a database to credit and acknowledge the
work of biocurators, collecting and aggregating biocuration events
from third-party resources while generating achievements and
displaying leaderboards. APICURON is used as an external tracker
of biocuration activities for the DOME registry to increase user en-
gagement and recognize their contributions. The DOME registry is
a partner resource of APICURON for the formal recognition of an-
notation activities.

The only activity recognized in APICURON so far is “annotation
submitted,” which assigns a score to users who submit annota-
tions from the DSW instance to the DOME registry. Contributions
are credited as soon as the annotations are submitted, even if they
are still private. APICURON provides 2 additional recognition com-
ponents to increase user engagement: medals and badges. Medals
are awarded based on relative user rankings, determined by the
number of annotations submitted, without fixed quotas. For in-
stance, medals are given to the top annotator, the top 5 anno-
tators, and the top 10 annotators. Badges, however, are awarded
based on fixed thresholds of published annotations, with the pro-
gression being “Newbie Annotator” (2 entries), “Junior Annotator”
(10 entries), “Senior Annotator” (20 entries), and “Advanced Con-
tributor” (50 entries).

We adopted a community curation approach to provide the sci-
entific community with an expanded collection of ML publica-
tions reported using the DOME recommendations. Specifically, we
conducted a targeted query on the Scopus database to retrieve
a substantial number of ML-related articles using the following
search string: KEY (machine AND learning) AND KEY (biologx)
AND SUBJAREA (agri OR bioc OR immu OR neur OR phar) AND
(LIMIT-TO (OA, “all”) OR LIMIT-TO (OA, “BIOC") AND LIMIT-TO
DOCTYPE). Due to the large volume of results (over 4,000 arti-
cles), we selected a random subset, divided and distributed among
members of the ELIXIR Machine Learning Focus Group. These ex-
perts then performed the annotations according to DOME rec-
ommendations. By involving multiple experts, the community
curation process ensures that the curated data meet high stan-
dards of quality and accuracy, leveraging diverse perspectives to
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minimize bias. Articles that were deemed irrelevant in the con-
text of DOME recommendations (i.e., lacking development and/or
application of supervised ML algorithms/models) were excluded
from annotation.

DOME Score

The DOME score attempts to capture the adherence to best prac-
tices in the DOME categories, standardizing the evaluation of un-
supervised ML research quality and transparency. In its present
form, the DOME score is calculated simply as the number of valid
answers divided by the total number of questions for each DOME
category. The DOME score should be seen as a preliminary mea-
sure rather than a comprehensive assessment. It offers a rough
approximation that may not fully capture all the complexities and
nuances of ML or specific challenges associated with different bi-
ological applications. Future work is needed to continue refining
the DOME score through continuous feedback from the research
community, assessing its effectiveness in practical applications,
and updating the scoring system to address any identified gaps.

Use Case: Scientific Journal

One direct application of the DOME recommendations and reg-
istry is their integration into the journal paper publishing process
(i.e., submission, revision, acceptance, publication). When authors
submit a manuscript detailing supervised ML approaches, a jour-
nal may request the inclusion of the DOME recommendation re-
port. This report can facilitate the revision process, helping the re-
viewers to better evaluate the merits of the adopted ML methods,
and later be provided as supplementary data upon publication.
The workflow outlined in Fig. 1 and described above can be read-
ily utilized in this context. Submitting authors can log into the
DOME-DSW, complete the report indicating it is for a manuscript
submission along with the journal name, and then submit it to the
registry. Once submitted, the annotation is directly inserted into
the DOME registry database with visibility set as private by de-
fault. The reviewers of the manuscript can access the information
through a direct link to the private page. Following this, the jour-
nal’s admin, responsible for reviewing, publishing, deleting, and
modifying annotations within their organization, can publish the
annotation after review. It is important to note that once the an-
notation becomes public, the owner rescinds control over it. Sub-
sequently, only the journal’s admin retains control over the an-
notation. A unique identifier is assigned to the annotation when
it becomes public in the DOME registry, allowing incorporation as
external data source or metadata in the publication.

Integrating the DOME recommendations into the journal pub-
lishing process creates a more rigorous, transparent, and repro-
ducible framework for ML research. Journals may benefit from
higher-quality submissions and a streamlined review process, re-
viewers gain a standardized and efficient evaluation tool, and au-
thors receive a structured reporting format that enhances their
work’s visibility and credibility. This integration not only improves
the quality of published ML research but also increases trans-
parency and reproducibility.

Conclusions and Future Work

As the field of ML in biological sciences continues to grow, there
is an increasing need for standardized reporting practices to en-
sure that ML is transparent and reproducible. The DOME recom-
mendations aim to enhance the reproducibility and clarity of ML

methods, serving as an initial framework for a consensus-based
community discussion.

Here we introduced the DOME registry, which provides a cen-
tralized repository for accessing and submitting reports on super-
vised ML publications. Each entry in the registry includes an anno-
tated DOME recommendations report, along with essential article
details such as journal, title, authors, digital object identifier (DOI),
and PubMed identifier. Publications are assigned a unique identi-
fier and a DOME score reflecting their adherence to the DOME rec-
ommendations. This structured approach not only supports the
adoption of DOME recommendations but also addresses the need
for reliable evaluation of ML methods.

Community curation has further enriched the DOME registry,
resulting in a collection of supervised ML-related publications
annotated according to DOME recommendations. This curated
collection serves as a reference, promoting best practices in ML
model validation and contributing to the broader dissemination of
these practices. Future efforts will focus on continuing to expand
the registry through community curation, involving researchers
from various communities who develop ML methods for life sci-
ence applications.

Integration with the DSW streamlines the annotation process,
allowing users to create, share, and submit annotations in accor-
dance with DOME recommendations. The validation and scoring
of annotations ensure their proper completion, and organization
admins can manage the publication timing of annotations within
their organizations. This process aligns with the goal of engaging
publishers to require adherence to DOME recommendations dur-
ing the article submission process, which will increase the adop-
tion of these standards across different research fields. By provid-
ing DOME recommendation reports alongside manuscripts, this
approach will enhance the transparency and reproducibility of ML
methods from the paper submission stage, through peer review,
and up to final publication.

Of course, standards for reporting on ML models, as well as the
tools and services that support these, are of particular significance
in the context of FAIR. As the FAIR guiding principles were meant
to apply to all digital assets, at a high level, and over time, be-
yond data, they have now been reinterpreted or extended to in-
clude the software, tools, algorithms, and workflows that produce
data—and recently also adapted in the context of Al models and
datasets. Ensuring that data and Al models are FAIR facilitates a
better understanding of their content and context, enabling more
transparent provenance and reproducibility [21, 22]. There is a
strong connection between FAIRness and interpretability, as FAIR
models facilitate comparisons of benchmark results across mod-
els [15] and applications of post hoc explainable Al methods [23].
There are many global efforts toward this direction [24], with a
key example being the Research Data Alliance Interest Group of
FAIR for Machine Learning [25], where DOME is one of the stan-
dards actively involved, as effective reporting of the ML process is
a clear facilitator of the FAIR principles. Finally, it is worth high-
lighting the necessity of clearly structured and effective metadata
for both the FAIR aspects as well as the DOME recommendations.
Going beyond the needs of data, additional controlled vocabular-
ies, ontologies, and structured metadata are necessary to ensure
both well-described ML models, as well as machine-actionable an-
notation records. There are already a few specific efforts in this
direction [26], ultimately allowing the DOME registry to support
such metadata.

We believe that the development of standardized reporting
guidelines can significantly enhance the transparency, repro-
ducibility, and ultimately quality of publications describing ML/AI
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methods. The DOME registry represents a step forward in this on-
going endeavor.
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