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Abstract 

Supervised machine learning (ML) is used extensi v el y in biology and deserves closer scrutiny. The Data Optimization Model Evalu- 
ation (DOME) recommendations aim to enhance the validation and reproducibility of ML resear c h by establishing standards for key 
aspects such as data handling and pr ocessing, optimization, ev aluation, and model interpr eta bility. The r ecommendations help to 
ensure that key details are reported transparently by providing a structured set of questions. Here , w e introduce the DOME registry 
(URL: r egistr y.dome-ml.org), a data base that allows scientists to manage and access compr ehensi v e DOME-r elated information on 

published ML studies. The registry uses external resources like ORCID, APICURON, and the Data Stewardship Wizard to streamline 
the annotation process and ensure comprehensive documentation. By assigning unique identifiers and DOME scores to publications, 
the r egistr y fosters a standardized evaluation of ML methods. Future plans include continuing to grow the r egistr y thr ough comm unity 
curation, impr oving the DOME scor e definition and encoura ging pub lishers to adopt DOME standards, and pr omoting transpar ency 
and r e pr oducibility of ML in the life sciences. 

Ke yw or ds: mac hine learning, standards, transparency, r e pr oducibility 
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Introduction 

Thanks to the sharp decline in cost for many high-throughput 
tec hnologies, lar ge volumes of biological data are being generated 

at a r a pid pace and made accessible to r esearc hers. In this con- 
text, the field of machine learning (ML) or artificial intelligence 
(AI) has risen to prominence given its applicability in data analy- 
sis and creation of prediction models using large-scale biological 
data, such as genomics [ 1 ] and proteomics [ 2 ] data, thus leading 
Recei v ed: August 16, 2024. Revised: October 22, 2024. Accepted: October 27, 2024 
© The Author(s) 2024. Published by Oxford Uni v ersity Pr ess GigaScience. This is an
Attribution License ( https://cr eati v ecommons.org/licenses/by/4.0/ ), which permits 
the original work is pr operl y cited. 
o the de v elopment of innov ativ e and far-r eac hing medical appli-
ations [ 3 ]. 

Despite the availability of data and advances in ML/AI, the
pplication of supervised ML algorithms in the biological sci- 
nces is still beset by se v er al pr oblems, leading to pitfalls in the
ider adoption and r epr oducibility of these methodologies [ 4 ,
 ]. For example, most ML-related publications are not accompa- 
ied b y w et-lab experimental v alidation and ar e instead based on
 Open Access article distributed under the terms of the Cr eati v e Commons 
unrestricted reuse, distribution, and reproduction in any medium, provided 

https://orcid.org/0009-0002-2327-9430
https://orcid.org/0000-0002-7395-2921
https://orcid.org/0000-0001-8035-341X
https://orcid.org/0000-0002-2323-0963
https://orcid.org/0000-0001-5166-8551
https://orcid.org/0000-0003-4067-7123
https://orcid.org/0000-0003-3986-0510
https://orcid.org/0000-0001-9224-9820
https://orcid.org/0000-0003-3645-1455
https://orcid.org/0000-0003-3659-4819
https://orcid.org/0000-0002-7152-5512
https://orcid.org/0000-0002-3374-2962
https://orcid.org/0000-0002-7359-0633
https://orcid.org/0000-0001-9174-511X
https://orcid.org/0000-0003-3487-4331
https://orcid.org/0000-0001-8210-2390
https://orcid.org/0000-0003-0362-8218
https://orcid.org/0000-0002-0222-4273
https://orcid.org/0000-0003-4525-7793
mailto:fpsom@certh.gr
mailto:silvio.tosatto@unipd.it
https://creativecommons.org/licenses/by/4.0/


2 | GigaScience , 2024, Vol. 13 

v  

l  

m  

i  

a  

d  

m  

m  

a  

t  

n
 

t  

s  

c  

e  

t  

b  

E  

p  

a  

m  

o  

e  

a  

i  

t  

t  

p  

1  

m  

f  

(  

t  

f  

r
 

t  

a  

D  

r  

p  

i  

f  

t  

r  

i  

(  

p  

t  

a  

t  

a

D
D
T  

d  

d  

e  

s  

a  

n  

t  

s  

i  

t  

c  

s  

o
 

o  

a  

i  

s  

s  

o  

u  

m  

v  

r  

c  

u  

o  

p  

o

W
D  

f  

g  

s  

b  

t
 

T  

s  

i  

d
 

R  

r  

d  

D  

l  

t  

n  

f
 

t  

i  

a  

t  

v
 

t  

c  

o  

w

U
T  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae094/7921169 by guest on 14 D

ecem
ber 2024
 arious a ppr oac hes of computational assessments [ 6 ], whic h can
ead to bias and inaccuracy during result reporting [ 6 ]. Further-

or e, good pr actices of supervised ML model de v elopment, aim-
ng to increase model performance and facilitate generalization
nd r epr oducibility, ar e often ov erlooked [ 7 , 8 ]. These issues un-
erscore the importance of developing a set of practical recom-
endations regarding (i) the construction and evaluation of ML
odels, considering the utilized data, optimization techniques,

nd model performance e v aluation, and (ii) thor ough documenta-
ion of the ML de v elopment pr ocess, encompassing crucial tec h-
ical details in a compr ehensiv e and concise manner [ 5 ]. 

The ELIXIR Machine Learning Focus Group is part of ELIXIR,
he European infrastructure for life science data, which repre-
ents over 250 research organizations in 24 countries . T hrough a
omm unity-driv en consensus process that involved over 50 ML
xperts, the ML Focus Group established a set of recommenda-
ions for reporting supervised ML approaches in computational
iology [ 9 ]. Collectiv el y known as the Data Optimization Model
v aluation (DOME) r ecommendations , they co ver the major as-
ects in supervised ML (i.e., data, optimization, model, and e v alu-
tion) in the context of scientific publications . T he DOME recom-
endations aim to enhance the r epr oducibility and tr anspar ency

f published ML a ppr oac hes for readers , experimentalists , r e vie w-
rs, and the br oader comm unity. K ey c hallenges suc h as gener-
lization to independent data, effective optimization, and model
nter pr etability ar e addr essed, with an emphasis on rigorous sta-
istical testing for accurate performance assessment. We suggest
hat DOME recommendations should be used as a report accom-
anying a manuscript in its supplementary data section (e.g., [ 10 ,
1 ]). Curr entl y, the DOME recommendations focus on providing a
inimal standard for reporting supervised ML models designed

or biological applications and do not extend to other ML classes
e.g., unsupervised or reinforcement learning). A similar effort is
he AIMe registry focusing on the description of ML/AI methods
or biomedical applications [ 12 ]. At the time of writing, the AIMe
egistry contains 35 entries. 

Her e, we pr esent the DOME registry to facilitate the dissemina-
ion and adoption of DOME recommendations by data scientists
nd practitioners, working in a wide range of biological fields . T he
OME registry constitutes a structured database that allows for
 esearc hers to handle and manage DOME-related information on
ublished and unpublished ML a pplications, pr oviding a unique

dentifier for each publication and a DOME score . Here , we of-
er a compr ehensiv e ov ervie w of the structur e and implementa-
ion of the DOME registry, including its connection with external
 esources suc h as Open Researc her and Contributor ID (ORCID)
dentifier [ 13 ], APICURON [ 14 ], and the Data Stew ar dship Wizar d
DSW) [ 15 ], which enhances user access management and data in-
ut. The user-friendly web interface facilitates access to annota-
ions and supports different user categories for managing, editing,
nd publishing data. Finally, we present a use case, demonstrating
he integration of DOME recommendations and registry into the
rticle publishing process of a journal. 

atabase Structure and Implementation 

atabase structure 

he DOME registry utilizes MongoDB, a NoSQL database, to han-
le its data. MongoDB’s document-oriented structure allows for
ynamic and adaptable schema design, which is essential for the
 volving natur e of the DOME r egistry. Figur e 1 shows the database
c hema, whic h is based on 2 main data structures—annotation
nd user—and the relationship between these collections . T he an-
otation data structure implements the specifications defined in
he DOME recommendations [ 9 ] for an annotated article. It can be
een as an object containing many properties, which can be split
nto 2 different groups . T he first group contains descriptive proper-
ies for the annotation itself (i.e., unique identifier, short identifier,
reation and update timestamps, public flag, and the annotation’s
tate). The second group contains the sections defined in the rec-
mmendations: dataset, optimization, model, and e v aluation. 

Each annotation is associated with a user (see Fig. 1 ). The user
bject is defined by 4 properties: ORCID identifier, name, email,
nd organization name (a group of users). The ORCID identifier
s uniquely issued by the ORCID authentication service . T he as-
ociation between an annotation and a user is implemented by
etting the user’s ORCID identifier as a property in the annotation
bject itself. The system implements 3 user r oles: r egular user,
ser with an organization’s admin privileges, and admin. The ad-
in role has access to all annotations in the database (both pri-

ate and public) and has the authority to delete and modify them
egardless of their privacy status. Additionally, the administrator
an change the visibility of annotations from private to public. A
ser with an organization’s admin privileges can modify, publish,
r delete its own annotations as well as all the annotations of that
articular or ganization. The r egular user can onl y edit ov er their
wn annotations and can view only public annotations. 

eb server 
ata in the DOME registry database is served to the user inter-

ace through a web server implementing web Application Pro-
ramming Interfaces (APIs) compliant with the r epr esentational
tate transfer (REST) paradigm. Two groups of endpoints have
een implemented: one for authentication and authorization and
he other for handling annotations. 

The authentication and authorization group has 2 endpoints.
he first one r edir ects to the ORCID authentication service . T he
econd handles the ORCID authentication r esponse, r etrie v es user
nformation, and r edir ects bac k to the user interface, filling user
ata into cookies. 

The annotation endpoint group implements CR UD (Create ,
ead, Update, Delete) operations on annotations stored in the
egistry (Table 1 ). Authorized users (e.g., admin) can retrieve, up-
ate , delete , or insert an annotation by means of the GET , POST ,
ELETE, and P A TCH methods, r espectiv el y. Users can use all the

isted methods. Ho w e v er, the last 3 methods ar e av ailable onl y for
he user’s own private annotations . T he POST method inserts a
ew annotation into the database, which will be private by de-

ault. 
The server also executes a series of steps when a new annota-

ion is being inserted into the database. A timestamp and unique
dentifier are assigned to the new annotation, and the DOME score
ssociated with it is calculated. The DOME score is computed as
he number of valid answers to the DOME recommendations, di-
ided by the total number of questions. 

The API endpoints page, implemented with SWAGGER user in-
erface (UI), describes the DOME registry endpoints to provide a
lear visual r epr esentation for de v elopers and users . T he interface
ffers an easy-to-use platform for testing and future integration
ith other services. 

ser interface 

he DOME registry is accessed through a user interface [ 16 ], en-
bling users to easily search for and retrieve annotations. On the
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Figure 1: MongoDB schema design for the DOME registry. Rectangles of the same color represent fields within the same collection (User and 
Annotation). The attributes associated with each collection are listed inside the corresponding rectangles . T he “owner_id” attribute in the Annotation 
document r efer ences the User document, indicating the cr eator of the Annotation. For Dataset, Optimization, Model, and Evaluation, there are 2 
additional attributes: “skipped” and “done .” T he “skipped” attribute tr ac ks the number of fields that are either left empty or marked as “No” or “not 
assigned.” The “done” attribute indicates the number of fields that ar e corr ectl y filled in. These attributes ar e used to compute the DOME scor e. 

Table 1: DOME registry main endpoints for accessing annotations. All endpoints must begin with the domain fr a gment https://r egistry. 
dome-ml.or g/a pi/. 

Type Accessibility Description 

Get Public Return all the annotations in the database. P ar ameter shortUID (for a specific annotation) 
Post Private Store a new annotation into the database. 
Delete Private Delete annotation from the database. Parameter uuid (for a specific annotation) 
P atc h Private Modify an annotation. P ar ameter uuid (to modify a specific annotation) 
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home page, users can view an overview of the number of entries 
and users who have deposited annotations in the registry. They 
can also dir ectl y access v arious pa ges , including statistics , browse ,
submit, API, about, and help. 

The browse page allows users to easily search through annota- 
tions (Fig. 2 A). On the top part, a search form allows users to input 
v alues, while r adio buttons below the text box let them sort r e- 
sults by criteria such as Title , Authors , Y ear , and DOME Score . T he 
system then searches across all fields in each annotation, display- 
ing only those that match the search terms. Clicking on a specific 
annotation opens the entry page (Fig. 2 B). This page provides de- 
tailed information about the publication, as well as each section 

of the DOME recommendations along with the answers to each 
uestion. It also displays the DOME score for each DOME category
nd the DOME-id for r efer encing the specific entry. 

Additionall y, the statistics pa ge pr esents v arious metrics de-
iv ed fr om public annotations thr ough inter activ e plots, including
he number of annotated papers per journal, publication year, and
OME score distribution, both overall and by section. For users

ooking to contribute, the submit pa ge featur es an intr oductory
ideo that guides them through creating a new annotation using
he DSW and submitting it to the DOME registry. 

Users who have contributed to the DOME registry by submit-
ing annotations can sign in by clicking the button on the upper
ight corner of the home page . T hey will be r edir ected to the OR-
ID authentication page, and after a successful login, they will be

https://registry.dome-ml.org/api/
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F igure 2: Bro wse and entry pa ges in the DOME r egistry. (A) The br owse pa ge allo ws users to sear c h for publications in the r egistry and sort them by 
specific criteria. (B) The entry page displays the full details of the publication and is divided into sections (Dataset, Optimization, Model, and 
Evaluation) that provide the answers to the DOME recommendations. On the right side of the entry pa ge, ther e is an index with detailed information 
about the DOME score for each category and the DOME-id. 
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eturned to the DOME registry home page . T he login button will
e replaced by the user’s name and ORCID identifier, along with a
r opdown menu wher e the logout button can be found. Authen-
icated users can also choose whether to view public or their own
rivate annotations by using the toggle switch next to the search
ox on the br owse pa ge. Users with admin privileges can access
pecific annotations through the browse page, where they have
he options to edit, delete, and publish dir ectl y fr om the interface.

OME Registry Workflow 

 he o v er all DOME r egistry system uses v arious external r esources,
uch as ORCID for researcher identification, DSW to streamline
he process of managing and publishing DOME-related informa-
ion, and APICURON to provide credit and recognition for biocura-
ion activities . T his w orkflo w ensur es a structur ed and v alidated
 ppr oac h to assessing ML applications in the biological sciences,
aking it easier for users to manage, edit, and publish r ele v ant

ata through a user-friendly web interface (Fig. 3 ). 
Users have to login to the DSW to cr eate, shar e, and submit

OME questionnair es r elated to a scientific manuscript. The com-
leted questionnair e gener ates a JSON file containing the r ele v ant
ser and manuscript data as well as answers for the DOME fields.
 v alidation pr ocess is a pplied to the JSON file thr ough the DOME
egistry API, using the ORCID checksum to verify the validity of
he ORCID record specified by the user. Following successful val-
dation, the server calculates the DOME score for the annotation,
hic h is sav ed on the serv er as priv ate. At this point, the user’s

ontribution is also sent to APICURON for credit attribution. 
Admin users can full y mana ge all annotations r eceiv ed

hrough the DSW by logging into the DOME registry using their
RCID identifiers . T hey ha v e the ability to r e vie w, edit, and delete
nnotations and can choose to publish them at their discretion.
urthermore, annotations can be assigned to groups of users
ithin a specific organization (organization admins , e .g., journal
ublishers) who have admin roles for annotations from their orga-
ization, allowing them to determine the publication timing. Only
ublic annotations are accessible to all users through the DOME
egistry website. 

SW 

he DSW [ 17 , 18 ] is a tool designed to facilitate the creation,
lanning, collaboration, and execution of data management plans
ased on Findable , Accessible , Inter oper able, Reusable (FAIR) prin-
iples . T he tool aims to simplify the process of building a data
anagement plan by offering smart questionnaires that guide

sers thr ough v arious consider ations needed for high-quality r e-
earch data, without requiring extensive text writing. To facilitate
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Figure 3: DOME registry workflow. Process of creating, validating, and managing DOME annotations with the integration of ORCID, DSW, and 
APICURON with the DOME registry API and UI. 
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efficient collabor ativ e work, a customized instance of the DSW 

has been de v eloped specificall y for the DOME registry (DOME- 
DSW), accessible via [ 19 ]. This customized version of DSW en- 
ables users to address the set of questions r ele v ant to a particular 
manuscript in accordance with DOME recommendations. Further- 
mor e, additional information suc h as the user’s ORCID identifier,
email address, and manuscript details are required. Users are al- 
lo w ed to cr eate, shar e, and modify annotations and, upon com- 
pletion, submit them to the DOME registry in JSON format (see 
Fig. 1 ). 

ORCID 

ORCID serves as a component that provides an authentication ser- 
vice and a unique identifier for r esearc hers. It is used within the 
API Submission Service to verify the identity of contributors and 

associate them with their published and unpublished works. By 
integr ating ORCID pr ofiles, the system ensur es accur ate and r eli- 
able attribution of user data and annotation contributions, facili- 
tating the management and validation of user-generated content 
within the DOME registry. 

APICURON 

APICURON [ 14 , 20 ] is a database to credit and acknowledge the 
work of biocurators, collecting and aggregating biocuration events 
fr om third-party r esources while gener ating ac hie v ements and 

displa ying leaderboards . APICURON is used as an external tr ac ker 
of biocuration activities for the DOME registry to increase user en- 
gagement and recognize their contributions . T he DOME registry is 
a partner resource of APICURON for the formal recognition of an- 
notation activities. 
The only activity recognized in APICURON so far is “annotation
ubmitted,” which assigns a score to users who submit annota- 
ions from the DSW instance to the DOME registry. Contributions
r e cr edited as soon as the annotations ar e submitted, e v en if they
r e still priv ate. APICURON pr ovides 2 additional recognition com-
onents to increase user engagement: medals and badges. Medals 
re aw ar ded based on r elativ e user r ankings, determined by the
umber of annotations submitted, without fixed quotas. For in- 
tance, medals are given to the top annotator, the top 5 anno-
ators, and the top 10 annotators . Badges , ho w e v er, ar e aw ar ded
ased on fixed thresholds of published annotations, with the pro-
ression being “Newbie Annotator” (2 entries), “Junior Annotator”
10 entries), “Senior Annotator” (20 entries), and “Advanced Con- 
ributor” (50 entries). 

omm unity Cur a tion 

e adopted a comm unity cur ation a ppr oac h to pr ovide the sci-
ntific community with an expanded collection of ML publica- 
ions reported using the DOME r ecommendations. Specificall y, we
onducted a targeted query on the Scopus database to r etrie v e
 substantial number of ML-related articles using the following 
earc h string: KEY (mac hine AND learning) AND KEY (biolog ∗)
ND SUBJAREA (agri OR bioc OR immu OR neur OR phar) AND

LIMIT-TO (OA, “all”) OR LIMIT-TO (OA, “BIOC”) AND LIMIT-TO 

OCTYPE). Due to the large volume of results (over 4,000 arti-
les), we selected a random subset, divided and distributed among 
embers of the ELIXIR Machine Learning Focus Group. These ex- 

erts then performed the annotations according to DOME rec- 
mmendations . By in volving multiple experts, the community 
ur ation pr ocess ensur es that the cur ated data meet high stan-
ards of quality and accur acy, le v er a ging div erse perspectiv es to
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inimize bias. Articles that were deemed irrelevant in the con-
ext of DOME recommendations (i.e., lacking development and/or
pplication of supervised ML algorithms/models) were excluded
rom annotation. 

OME Score 

he DOME score attempts to capture the adherence to best prac-
ices in the DOME categories, standardizing the e v aluation of un-
upervised ML r esearc h quality and tr anspar ency. In its pr esent
orm, the DOME score is calculated simply as the number of valid
nswers divided by the total number of questions for each DOME
ategory. The DOME score should be seen as a preliminary mea-
ur e r ather than a compr ehensiv e assessment. It offers a r ough
 ppr oximation that may not fully capture all the complexities and
uances of ML or specific challenges associated with different bi-
logical a pplications. Futur e work is needed to continue refining
he DOME scor e thr ough continuous feedbac k fr om the r esearc h
omm unity, assessing its effectiv eness in pr actical a pplications,
nd updating the scoring system to address any identified gaps. 

se Case: Scientific Journal 
ne dir ect a pplication of the DOME r ecommendations and r eg-

stry is their integration into the journal paper publishing process
i.e., submission, r e vision, acceptance, publication). When authors
ubmit a manuscript detailing supervised ML a ppr oac hes, a jour-
al may request the inclusion of the DOME recommendation re-
ort. This report can facilitate the r e vision pr ocess, helping the r e-
iewers to better evaluate the merits of the adopted ML methods,
nd later be provided as supplementary data upon publication.
he w orkflo w outlined in Fig. 1 and described abov e can be r ead-

ly utilized in this context. Submitting authors can log into the
OME-DSW, complete the report indicating it is for a manuscript
ubmission along with the journal name, and then submit it to the
egistry. Once submitted, the annotation is directly inserted into
he DOME registry database with visibility set as private by de-
ault. The r e vie wers of the manuscript can access the information
hrough a direct link to the private page. Following this, the jour-
al’s admin, responsible for reviewing, publishing, deleting, and
odifying annotations within their organization, can publish the

nnotation after r e vie w. It is important to note that once the an-
otation becomes public, the owner rescinds control over it. Sub-
equentl y, onl y the journal’s admin retains control over the an-
otation. A unique identifier is assigned to the annotation when

t becomes public in the DOME r egistry, allowing incor por ation as
xternal data source or metadata in the publication. 

Integrating the DOME recommendations into the journal pub-
ishing process creates a more rigorous, transparent, and repro-
ucible fr ame work for ML r esearc h. J ournals ma y benefit from
igher-quality submissions and a str eamlined r e vie w pr ocess, r e-
iewers gain a standardized and efficient e v aluation tool, and au-
hors r eceiv e a structur ed r eporting format that enhances their
ork’s visibility and credibility. This integration not only improves

he quality of published ML r esearc h but also incr eases tr ans-
arency and reproducibility. 

onclusions and Future Work 

s the field of ML in biological sciences continues to gr ow, ther e
s an increasing need for standardized reporting practices to en-
ure that ML is transparent and reproducible . T he DOME recom-
endations aim to enhance the r epr oducibility and clarity of ML
ethods, serving as an initial fr ame work for a consensus-based
ommunity discussion. 

Here we introduced the DOME registry, which provides a cen-
r alized r epository for accessing and submitting r eports on super-
ised ML publications. Each entry in the registry includes an anno-
ated DOME recommendations report, along with essential article
etails such as journal, title , authors , digital object identifier (DOI),
nd PubMed identifier. Publications are assigned a unique identi-
er and a DOME score reflecting their adherence to the DOME rec-
mmendations . T his structur ed a ppr oac h not onl y supports the
doption of DOME recommendations but also addresses the need
or reliable evaluation of ML methods. 

Comm unity cur ation has further enric hed the DOME r egistry,
esulting in a collection of supervised ML-related publications
nnotated according to DOME recommendations . T his curated
ollection serves as a reference, promoting best practices in ML
odel validation and contributing to the broader dissemination of

hese pr actices. Futur e efforts will focus on continuing to expand
he r egistry thr ough comm unity cur ation, involving r esearc hers
r om v arious comm unities who de v elop ML methods for life sci-
nce applications. 

Integration with the DSW streamlines the annotation process,
llowing users to cr eate, shar e, and submit annotations in accor-
ance with DOME recommendations . T he validation and scoring
f annotations ensure their proper completion, and organization
dmins can manage the publication timing of annotations within
heir organizations . T his process aligns with the goal of engaging
ublishers to r equir e adher ence to DOME r ecommendations dur-

ng the article submission pr ocess, whic h will increase the adop-
ion of these standards across different research fields. By provid-
ng DOME recommendation reports alongside manuscripts, this
 ppr oac h will enhance the tr anspar ency and r epr oducibility of ML
ethods from the paper submission stage, through peer review,

nd up to final publication. 
Of course, standards for reporting on ML models, as well as the

ools and services that support these, are of particular significance
n the context of FAIR. As the FAIR guiding principles were meant
o a ppl y to all digital assets, at a high le v el, and ov er time, be-
ond data, they have now been r einter pr eted or extended to in-
lude the software , tools , algorithms , and w orkflo ws that produce
ata—and r ecentl y also ada pted in the context of AI models and
atasets. Ensuring that data and AI models are FAIR facilitates a
etter understanding of their content and context, enabling more
r anspar ent pr ov enance and r epr oducibility [ 21 , 22 ]. Ther e is a
trong connection between FAIRness and inter pr etability, as FAIR
odels facilitate comparisons of benchmark results across mod-

ls [ 15 ] and applications of post hoc explainable AI methods [ 23 ].
her e ar e man y global efforts to w ar d this direction [ 24 ], with a
 e y example being the Research Data Alliance Interest Group of
AIR for Machine Learning [ 25 ], where DOME is one of the stan-
ards activ el y involv ed, as effectiv e r eporting of the ML pr ocess is
 clear facilitator of the FAIR principles. Finally, it is worth high-
ighting the necessity of clearly structured and effective metadata
or both the FAIR aspects as well as the DOME recommendations.
oing beyond the needs of data, additional controlled vocabular-

es , ontologies , and structured metadata are necessary to ensure
oth well-described ML models, as well as machine-actionable an-
otation records . T here are already a few specific efforts in this
ir ection [ 26 ], ultimatel y allowing the DOME r egistry to support
uch metadata. 

We belie v e that the de v elopment of standardized r eporting
uidelines can significantly enhance the tr anspar ency, r epr o-
ucibility, and ultimately quality of publications describing ML/AI



DOME Registry | 7 

 

 

8  

E  

m  

d  

T
N
G
D  

C  

B  

C  

“
I
I
F
(  

[
a

D
N

C
T

R
1  

2  

3  

4  

5  

6  

 

7  

8  

 

9
 

1
 

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giae094/7921169 by guest on 14 D

ecem
ber 2024
methods . T he DOME registry represents a step forw ar d in this on- 
going endeavor. 
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