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An open challenge of computational and experimental biology is understanding the
impact of non-synonymous DNA variations on protein function and, subsequently,
human health. The effects of these variants on protein stability can be measured as
the difference in the free energy of unfolding (ΔΔG) between the mutated structure
of the protein and its wild-type form. Throughout the years, bioinformaticians have
developed a wide variety of tools and approaches to predict the ΔΔG. Although the
performance of these tools is highly variable, overall they are less accurate in
predicting ΔΔG stabilizing variations rather than the destabilizing ones. Here, we
analyze the possible reasons for this difference by focusing on the relationship
between experimentally-measured ΔΔG and seven protein properties on three
widely-used datasets (S2648, VariBench, Ssym) and a recently introduced one
(S669). These properties include protein structural information, different physical
properties and statistical potentials. We found that two highly used input features,
i.e., hydrophobicity and the Blosum62 substitutionmatrix, show a performance close
to random choice when trying to separate stabilizing variants from either neutral or
destabilizing ones. We then speculate that, since destabilizing variations are themost
abundant class in the available datasets, the overall performance of the methods is
higher when including features that improve the prediction for the destabilizing
variants at the expense of the stabilizing ones. These findings highlight the need of
designing predictive methods able to exploit also input features highly correlated
with the stabilizing variants. New tools should also be tested on a not-artificially
balanced dataset, reporting the performance on all the three classes (i.e., stabilizing,
neutral and destabilizing variants) and not only the overall results.
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1 Introduction

Non-synonymous DNA variations can affect the stability of the protein structure,
jeopardising its function with potential pathogenic outcomes (Casadio et al., 2011; Yue
et al., 2005; Hartl, 2017; Martelli et al., 2016; Cheng et al., 2008; Compiani and Capriotti,
2013; Birolo et al., 2021). For this reason, the impact of these variations on the protein structure
and its stability is a widely studied problem, even though its in silico prediction is still
challenging for bioinformaticians.

The effects of non-synonymous variants on the protein stability are usually expressed as the
difference in the Gibbs free energy of unfolding (ΔΔG), measured in kcal/mol and defined as the
difference between the unfolding free energy of the mutated structure (M) of the protein and its
wild-type form (W):

ΔΔGWM � ΔGM − ΔGW. (1)
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With this notation, destabilizing variants are associated to a
negative ΔΔG, while this value is positive for the stabilizing ones.
For those mutations showing ΔΔG values close to zero, the significant
experimental uncertainties (Montanucci et al., 2019b; Benevenuta and
Fariselli, 2019) make their ΔΔG signs less reliable. At the same time,
these ΔΔG values indicate a minimal variation of folding stability of
the variants. To account for this issue, we consider an intermediate
class of variants named “neutral”, whose ΔΔG values are in the range
between -0.5 and 0.5 kcal/mol. The choice of 0.5 kcal/mol is based on
the average experimental error, as reported in Capriotti et al. (2008).

Over the years, several computational tools have been developed to
predict the ΔΔG, combining machine learning methods, statistical
potential energy, physico-chemical properties, sequence features and
evolutionary information (Benevenuta et al., 2021; Pancotti et al.,
2021; Montanucci et al., 2019a; Pires et al., 2014b; Worth et al., 2011;
Samaga et al., 2021; Pires et al., 2014a; Rodrigues et al., 2018; Rodrigues
et al., 2021; Schymkowitz et al., 2005; Li et al., 2021; Cheng et al., 2006;
Kellogg et al., 2011; Capriotti et al., 2005; Li et al., 2020; Chen et al.,
2020; Dehouck et al., 2011; Laimer et al., 2016; Savojardo et al., 2016;
Savojardo et al., 2019). As highlighted in Sanavia et al. (2020), most of
these tools still provide over-optimistic performance due to sequence
similarity between the proteins used in the training and test sets. To
provide a more realistic estimate of their performance, we recently
compared the predictive ability of 18 popular tools on a novel
manually-curated dataset in Pancotti et al. (2022). This dataset,
named S669, was extracted from ThermoMutDB (Xavier et al.,
2021) and it contains only variants belonging to proteins having
less than 25% sequence identity with those of S2648 (Pires et al.
(2016)) and VariBench (Nair and Vihinen (2013)), two datasets on
which most of the state-of-the-art methods were trained. Our analysis
underlined that, across all the methods, the performance is more
accurate in predicting destabilizing variants rather than the stabilizing
ones.

As possible solutions to this issue, methods had accounted for
unbalanced training datasets by “artificially balancing” it or by
exploiting the antisimmetry property, which is a relationship
imposed on ΔΔG values by thermodynamics. Specifically, given the
wild-type W and the mutated M protein structures, the folding free
energy ΔΔGWM fromW toM is equal and has the opposite sign of the
folding free energy ΔΔGMW from M to W, considering identical
experimental conditions:

ΔΔGWM � ΔGM − ΔGW � − ΔGW − ΔGM( ) � −ΔΔGMW. (2)
Using this property, any unbalanced training dataset can be
“artificially balanced” by introducing the reverse variants, which are
substitutions created from the experimentally-measured variants,
henceforth named “direct”. Considering the mutation from W to
M as the “direct” variant, its “reverse” is simply defined as:

M → W,withΔΔGMW � −ΔΔGWM. (3)
By artificially balancing the training dataset or by enforcing the

antisymmetric property in the model itself, a method should
theoretically be able to predict stabilizing variations with the same
accuracy as the destabilizing ones. This statement has been already
verified on S669 when considering both direct and reverse variants
(Pancotti et al., 2022). Here we showed that, when considering only
the direct variants, the performance is highly unbalanced with the
direct stabilizing variants, which were predicted much worse than the

direct destabilizing ones. Investigating the reasons for this discrepancy
is the main objective of the present work.

For most methods, this imbalance could be due to any reason
concerning the tool architecture or to the training phase. It is difficult,
in these cases, to isolate where the problem lies. On the other hand, for
an untrained method such as DDGun3D Montanucci et al. (2019a),
whose prediction is a linear combination of its features, this issue can
only arise from the features themselves.

For these reasons, we decided to study the impact on the predictions
of the following properties of residue substitutions: the difference in
hydrophobicity and volume, the logarithm of the conservation ratio, the
Blosum62 evolutionary score, the relative solvent accessibility and the
Skolnick and Bastolla-Vendruscolo potentials. These are the most
common features considered by the state-of-the-art methods and they
include the DDGun3D input features.

In this study, we showed that some of these commonly-used
features are only useful to predict destabilizing variants and
unhelpful for the stabilizing ones. Our findings highlight an
intrinsic difference between these two classes, suggesting the
importance of using different properties for the stabilizing
variants in order to develop methods with more consistent
performance between variant classes.

2 Materials and methods

2.1 Structural information, physical properties
and statistical potentials

We considered seven different features that include the DDGun3D
inputs and two more properties (conservation and volume of the
amino acids involved). All these features are not specific only to
DDGun3D, but they are commonly employed by ΔΔG predictors. We
analyzed:

1) two physical properties:

• Difference in hydrophobicity: the difference in hydrophobic
regions between wild-type and mutant residues according to the
Kyte-Doolittle scale (Kyte and Doolittle, 1982);

• Volume difference: the volume difference between the wild-
type and the mutated residue measured in �A

3
(Zamyatnin,

1972).

2) three features based on conservation and structural
information:

• Logarithm of the conservation ratio, defined as log(CONSW+ϵ
CONSM+ϵ),

with ϵ = 0.01 to avoid invalid results when any of the
conservation frequencies were equal to zero. If the mutation
changes an amino acid into a less conserved one, the logarithm
value is < 0;

• Blosum evolutionary score: the difference between the wild-
type and mutant residues in the Blosum62 substitution matrix,
B(W, M) (Henikoff and Henikoff, 1992);

• Relative Solvent Accessibility: a measure of the extent of burial
or exposure of the residue in the 3D protein structure, ranging
from 0 for completely buried to one for completely exposed. It
was computed through the DSSP program (Kabsch and Sander,
1983; Touw et al., 2015).
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3) two features based on the statistical potentials:

• Skolnick potential: the difference in the interaction energy
(measured through the Skolnick et al. (1997) statistical
potential) between the wild-type and substituted residues
with their sequence neighbours within a 2-residue window

∑i�2
i�−2

sk W, ai( ) − sk M, ai( )( );

• Bastolla-Vendruscolo potential: the difference in the
interaction energy, measured as the Bastolla statistical
potential (Bastolla et al., 2001) between the wild-type and
mutant residues with its structural neighbours,

∑
i∈I

bv W, ai( ) − bv M, ai( )( );

where I is the set of amino acid residues in the structural
neighbourhood of radius 5�A around the substituted position.

2.2 Datasets

We divided the analysis in two parts. Firstly, we studied the abilities
to predict the stabilizing variations of 18 protein stability predictors on:

• S669 (Pancotti et al., 2022) a recent manually-curated dataset
extracted from ThermoMutDB (Xavier et al., 2021) whose
variants belong to proteins having less than 25% sequence
identity with those of S2648 and VariBench.

Secondly, we studied the correlation and the predictive ability of
each different feature on a dataset that we named S4428, given by the
combination of S669 and:

• Ssym (Pucci et al., 2018) which provides 684 balanced (i.e., half
direct and half reverse) variations;

• S2648 (Dehouck et al., 2011) andVariBench (Nair and Vihinen,
2013), two of the most used datasets, both extracted from
Protherm (Kumar et al., 2006) database. They contain
respectively 2,648 and 1,420 manually curated variants with
experimentally measured ΔΔG values.

After merging all the datasets, we excluded 19 variants from the
analysis due to errors in their 3D neighbors. The composition of all the

datasets, their intersection and the distribution of their ΔΔGs are
reported in Table 1, Figures 1, 2, respectively.

2.3 The unbalanced predictions of the state-
of-the arts methods on never-before-seen
variants

As shown in Figure 1, Ssym, S2648 and VariBench, which are the
datasets most commonly used to train and test predictive methods,
share a large number of variants. On the other hand, S669 has no
variants in common with the other three datasets and its variants lie in
proteins with less than 25% of sequence identity with the proteins in
the other three datasets.

Since these characteristics are required for a proper test set, we will
only assess ΔΔG prediction performance on the S669 dataset and not
on the much larger S4428. The methods’ performance in the different
variant classes were evaluated by Pearson’s correlation coefficient (ρ)
and root mean square error (RMSE) between the experimental and the
predicted ΔΔG (Table 2), defined as:

ρ � Cov ΔΔGexp,ΔΔGpred( )
σΔΔGexp σΔΔGpred

(4)

RMSE �
���������������������∑N

i�1 ΔΔGexp
i − ΔΔGpred

i( )2
N

√
. (5)

where Cov is the covariance, σ is the standard deviation and N is the
number of variants.

2.4 Assessing the impact of the input features
in the prediction of destabilizing, neutral and
stabilizing variants

In order to assess the relevance of the seven features listed in
Section 2.1, we computed the Pearson’s correlation coefficient (ρ)
between each feature and the experimental ΔΔGs in S4428 (Table 3).
To remove the bias in the ρ values on the whole dataset caused by the
under-representation of the stabilizing and neutral variants with
respect to the destabilizing ones (Table 1), we randomly under-
sampled the available data to balance the classes. Specifically, we
generated 100 random balanced subsets of 984 variants extracted from
the original dataset. For each class we selected 328 elements, half the

TABLE 1 Datasets composition. The variants are grouped according to their ΔΔG
values into three classes: destabilizing (ΔΔG ≤−0.5 kcal/mol), neutral (|ΔΔG| <
0.5 kcal/mol) and stabilizing (ΔΔG ≥ 0.5 kcal/mol). The corresponding
percentages are reported into brackets.

Destabilizing Neutral Stabilizing

S2648 1,597 (60%) 755 (29%) 295 (11%)

S669 387 (58%) 195 (29%) 85 (13%)

Ssym 225 (33%) 234 (34%) 225 (33%)

VariBench 800 (56%) 426 (30%) 194 (14%)

S4428 2,461 (55%) 1,311 (30%) 656 (15%)

FIGURE 1
Venn diagrams showing the number of shared variants among the
Ssym, VariBench, S2648 and S669 datasets.
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size of the smallest class of variants on S4428. For each feature, the
average Pearson’s correlation coefficient and its standard deviation are
reported in Table 3 (column “Total balanced”).

We also evaluated the impact of the seven features in terms of their
discriminative power using the Receiver Operating Characteristic
(ROC) curve and its Area-Under-the-Curve (AUC-ROC) metric. We
removed the size effect by under-sampling the variants 100 times in
order to have 100 subsets of 656 variants for each pair of classes. On
these under-sampled datasets we used each feature to calculate three

different ROC curves separating three pairs of classes: Destabilizing-
Neutral, Destabilizing-Stabilizing, Neutral-Stabilizing. Here, the
assumption is that the higher the AUC scores, the better the
separation of the two classes by the variable and, therefore, the more
informative the variable is. The results of this analysis are shown in
Table 4 and in the SupplementaryMaterials. The ROC curves and AUC
scores of the logarithm of the conservation ratio, the volume difference
and the difference in hydrophobicity were calculated using the values
with opposite signs to help the interpretation. In Table 4, we also

FIGURE 2
Distribution of the experimental ΔΔG values in the Ssym, S669, S2648 and VariBench datasets.

TABLE 2 Pearson’s correlations and root mean square error (RMSE) between the experimental and estimated ΔΔGs. The ΔΔGs are predicted by 18 commonly used
protein stability prediction tools on the direct variants of the S669 dataset. The correlations and RMSE are calculated on each class separately (“Destabilizing”-
“Neutral”-“Stabilizing”), on the whole dataset (“Total”) and only on the destabilizing and stabilizing variants, excluding the neutral (“Non-neutral”).

Pearson/RMSE

Dataset Total Destabilizing Neutral Stabilizing Non-neutral

MAESTRO 0.50/1.44 0.42/1.46 −0.01/0.84 0.28/2.26 0.48/1.63

ACDC-NN 0.46/1.49 0.34/1.60 0.09/0.69 0.09/2.14 0.44/1.71

INPS3D 0.43/1.50 0.35/1.40 0.03/1.00 0.02/2.55 0.42/1.67

DDGun3D 0.43/1.60 0.32/1.69 0.13/0.94 0.13/2.22 0.41/1.80

INPS-Seq 0.43/1.52 0.26/1.56 0.10/0.92 0.13/2.25 0.42/1.70

ACDC-NN-Seq 0.42/1.53 0.28/1.64 0.08/0.76 0.07/2.18 0.40/1.75

PremPS 0.41/1.51 0.43/1.48 −0.02/0.84 −0.08/2.53 0.04/1.72

PopMusic 0.41/1.51 0.37/1.40 0.11/0.96 0.09/2.67 0.39/1.69

DUET 0.41/1.52 0.34/1.48 0.02/0.89 0.10/2.54 0.38/1.72

Dynamut 0.41/1.60 0.32/1.81 0.16/0.66 0.29/2.00 0.40/1.85

SDM 0.41/1.67 0.33/1.81 0.16/1.01 0.09/2.14 0.40/1.88

DDGun 0.40/1.75 0.25/1.75 0.12/1.29 0.11/2.46 0.39/1.90

SAAFEC-Seq 0.36/1.54 0.31/1.48 0.03/0.87 0.07/2.60 0.34/1.74

mCSM 0.36/1.54 0.30/1.42 −0.01/0.96 0.06/2.73 0.33/1.73

I-Mutant3.0 0.36/1.54 0.31/1.48 0.03/0.87 0.07/2.60 0.34/1.74

I-Mutant3.0-Seq 0.34/1.56 0.23/1.53 0.05/0.92 0.21/2.53 0.33/1.75

MuPro 0.25/1.61 0.19/1.45 0.08/1.08 −0.01/2.84 0.24/1.78

FoldX 0.21/2.32 0.20/2.25 0.01/2.28 0.17/2.66 0.24/2.33
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reported the p-values of the two-sided Mann-Whitney Wilcoxon test
computed between the distributions of the scores for each pair of classes.

2.5 Training a predictor with the reduced set
of features

To evaluate the combined effect of the Blosum evolutionary
score, difference in hydrophobicity and accessibility on the
predictions of the different classes, we trained a Random Forest
regressor on 100 random balanced subsets of S4428 (excluding
S669) and then tested its performance on S669 (Table 5). We used
three different sets of features: one with all the seven variables
(“full”), a reduced set with all the variables except for Blosum
evolutionary score and difference in hydrophobicity (“reduced”)
and one where we also excluded the accessibility (“red-no-acc”).
Therefore, we tested to which extent the removal of the
evolutionary-based component, the hydrophobicity and the
accessibility affects DDGun3D predictions. The original
DDGun3D score was computed as:

DDGun3Dfull � 0.20 · SBl + 0.29 · SSk + 0.18 · SHp + 0.33 · SBV]( )
· 1.1 − acc( ), (6)

where SBl, SSk, SBV, SHp, acc are, respectively, the components related to
the Blosum evolutionary score, the Skolnick and the Bastolla-
Vendruscolo potentials, the difference in hydrophobicity and the
accessibility, with the same coefficient and definition as in the
original paper Montanucci et al. (2019a). We defined two “reduced”
scores by dropping the corresponding components:

DDGun3Dreduced � 0.29 · SSk + 0.33 · SBV]( ) · 1.1 − acc( ),
DDGun3Dred−no−acc � 0.29 · SSk + 0.33 · SBV]( ). (7)

3 Results

We divided the results into four sections: the first shows the
methods’ performance on the different variant classes on S669, a blind
testing set, the second explores the correlation of the seven features

TABLE 3 Pearson correlation coefficient (ρ) between the experimental ΔΔGs and the seven considered features in the S4428 dataset. On the column “Total”, we have
the correlation in the whole unbalanced dataset, while on the column “Total Balanced” we reported the average Pearson’s correlation coefficient and its standard
deviation calculated in 100 random subsets with the same number of variants for each class (Stabilizing-Neutral-Destabilizing). The last three columns report the
correlation on each class separately, considering all the possible variants.

Pearson’s correlation coefficient

Total Total balanced Destabilizing Neutral Stabilizing

Accessibility 0.22 0.08 ± 0.02 0.28 0.02 −0.21

Bastolla-Vendruscolo potential 0.45 0.45 ± 0.03 0.36 0.13 0.18

Blosum evolutionary score 0.12 0.02 ± 0.02 0.26 −0.02 −0.18

Difference in hydrophobicity −0.21 −0.18 ± 0.03 −0.19 −0.04 −0.04

Volume difference −0.32 −0.34 ± 0.03 −0.22 −0.12 −0.15

Logarithm of the conservation ratio −0.37 −0.37 ± 0.02 −0.27 −0.11 −0.21

Skolnick potential 0.36 0.35 ± 0.03 0.29 0.07 0.13

TABLE 4 Ability of each feature to separate the different classes and differences in distributions. We extracted one hundred subsets of size 328 from each class and used
the variable score to calculate three different ROC curves: Destabilizing-Neutral, Destabilizing-Stabilizing, Neutral-Stabilizing. The assumption, here, is that the higher
the AUC-ROC, the better the variable can separate between the two classes and themore informative it is. For each pair of classes we also computed theMann-Whitney-
Wilcoxon test two-sided to establish the statistical significance of the differences in the distributions.

AUC-ROC scores and p-values

Destabilizing-neutral Destabilizing-stabilizing Neutral-stabilizing

AUC ± std p-values AUC ± std p-values AUC ± std p-values

Accessibility 0.69 ± 0.02 1.98e-79 0.55 ± 0.02 1.43e-04 0.36 ± 0.01 1.18e-23

Bastolla-Vendruscolo potential 0.66 ± 0.02 1.40e-58 0.75 ± 0.01 8.50e-84 0.63 ± 0.02 1.26e-22

Blosum evolutionary score 0.58 ± 0.02 5.61e-17 0.50 ± 0.02 7.08e-01 0.42 ± 0.02 1.21e-09

Difference in hydrophobicity 0.59 ± 0.02 9.41e-22 0.60 ± 0.02 2.28e-16 0.51 ± 0.02 4.22e-01

volume difference 0.60 ± 0.02 6.90e-24 0.72 ± 0.02 1.24e-63 0.64 ± 0.02 1.02e-22

Logarithm of the ratio of the conservation 0.66 ± 0.02 1.00e-58 0.75 ± 0.01 1.32e-84 0.63 ± 0.02 1.29e-20

Skolnick potential 0.64 ± 0.02 2.56e-41 0.71 ± 0.02 4.27e-63 0.60 ± 0.02 4.97e-14
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with the experimental ΔΔG values, the third section investigates their
discriminative power and the fourth section analyze their combined
impact on the predictions.

3.1 The unbalanced predictions among
stabilizing, neutral and destabilizing variants

In a previous study (Pancotti et al., 2022) we assessed the
performance of 18 ΔΔG prediction methods on the S669 dataset, a
test dataset with no intersection with the methods’ training sets and
whose variants are in proteins with less than 25% of sequence identity
with those in the training sets. We used both direct and reverse variants
(see Introduction) to show that, when dealing with never-before-seen
variants, those methods that do not respect the antisymmetry property
have a worse performance on stabilizing variants, while the
antisymmetric ones performed consistently well on both classes.

In this study, we focused uniquely on direct variants and we showed
that the difference in the non-antisymmetric methods’ performance
between destabilizing and stabilizing variants is even bigger when we do
not consider the reverse variants. In addition, even antisymmetric
methods showed a highly uneven performance between the classes
(Table 2). The correlations on the whole dataset and on the non-neutral
variants (destabilizing and stabilizing) were relatively good, with most
methods having ρ ≥ 0.4, showing that the predictions captured the
general trend of the experimental ΔΔGs. Most methods also predicted
relatively well the destabilizing variants, with a ρ ≥ 0.3. None of the
methods, however, was able to predict the stabilizing variants with a
good correlation. The highest Pearson’s correlation on the stabilizing
variants was ≤ 0.3 and the lowest RMSE was ≥ 2.

This result confirms the difficulty of current methods in
adequately recognizing the direct-stabilizing variants.

3.2 Relevance of the seven features:
Correlation on S4428

Weassessed the relevance of the seven features of interest by computing
their Pearson’s correlation coefficient (ρ) with the experimental ΔΔGs

considering the S4428 dataset (Table 3). When considering the whole
dataset, all the features showed absolute correlations ranging from ρ = 0.12,
observed with the Blosum evolutionary score, to ρ = 0.45, reached by the
Bastolla-Vendruscolo potential (Table 3, column “Total”).

However, when the different classes were balanced by randomly
sampling 100 balanced subsets of ~1,000 variants (column = “Total
balanced”), the correlation dropped significantly for the Blosum
evolutionary score and for the accessibility, since these two features are
correlated with the destabilizing variants (ρ = 0.26 and ρ = 0.28,
respectively) but anti-correlated with the stabilizing ones (ρ = −0.18
and ρ = −0.21, respectively). The reason for the anti-correlation of the
Blosum score with stabilizing variants and the correlation with the
destabilizing ones is the symmetry of the score, since B(W, M) = B (M,
W). On the other hand, for the accessibility this happens because, in
general, themore one amino acid is buried, the greater impact its mutation
has on the stability of the protein (either stabilizing or destabilizing).
Therefore, this feature should be used to modulate the impact of the
mutation, not to predict the sign.

The anti-correlation observed between the experimental ΔΔG and
the logarithm of the conservation ratio is coherent with the assumption
that the substitution of an amino acid with a less conserved one
(log(CONSW

CONSM
)> 0) will likely have a disruptive effect, while

substituting it with a more conserved one (log(CONSW
CONSM

)< 0) will
likely have a stabilizing effect. The volume difference and the
hydrophobicity between the two amino acids involved were also
anti-correlated with the experimental ΔΔG, meaning that a big
absolute volume difference is associated with a greater effect, with a
positive difference (i.e., mutated amino acid larger than the wild-type)
being disruptive and a negative difference (i.e., wild-type greater than
the mutated) being stabilizing. For hydrophobicity, while there seems to
be a general trend (Figure 3, ρ = −0.21 on the whole dataset), neutral and
stabilizing variants showed little correlations (ρ = −0.04 for both).

3.3 Discriminative power of the seven
features: AUC-ROC on S4428

We also evaluated the discriminative power of the seven features
using the AUC-ROC metric. We assumed that a specific feature is
informative and useful for the prediction tools if it is able to separate
the three pairs of classes (Destabilizing-Neutral, Destabilizing-
Stabilizing, Neutral-Stabilizing). The higher the AUC-ROC scores
for these separations, the more informative the feature is.

To remove the size effect, we under-sampled the variants 100 times
in order to have 100 subsets of 656 variants for each pair of classes. In
addition, due to their anti-correlation with the ΔΔGs, the ROC curves of
the logarithm of the conservation ratio, the volume difference and the
difference in hydrophobicity were calculated using the values with
opposite signs to respect the monotonic assumption that higher
AUC-ROC means higher discriminative power, making them more
immediately interpretable to the reader. In this way, instead of having a
score of e.g.,: 0.3, the score would become 1–0.3 = 0.7. All the
distributions of the features and the statistical differences between
the classes computed using the two-sided Mann-Whitney Wilcoxon
test are displayed in Figure 3 and in Table 4. The average AUC scores
with their standard deviations are reported in Table 4, while the ROC
curves are displayed in the Supplementary Materials.

The boxplots clearly show that none of the features perfectly
separates all the three classes (Figure 3).

TABLE 5 Predictions with different sets of features. We tested to which extent the
removal of the Blosum component, the hydrophobicity and the accessibility
affects the performance of a Random Forest regressor and DDGun3D on S669.
We used three different sets of features: one with all the seven variables, one
with all the variables except for Blosum evolutionary score and the difference in
hydrophobicity (“reduced”) and one where we also excluded the accessibility
(“red-no-acc”). Results are reported in terms of Pearson correlation coefficient
and RMSE.

Pearson/RMSE

Total Destabilizing Stabilizing

DDGun3Dfull 0.43/1.6 0.32/1.69 0.13/2.22

DDGun3Dreduced 0.37/1.69 0.29/1.96 0.17/1.96

DDGun3Dred-no-acc 0.34/1.75 0.26/2.02 0.15/2.0

Random Forestfull 0.42/1.56 0.28/1.70 0.15/2.09

Random Forestreduced 0.40/1.58 0.27/1.72 0.16/2.15

Random Forestred-no-acc 0.4/1.58 0.26/1.71 0.19/2.13
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Overall, we found that the features with the highest absolute Pearson’s
correlation coefficients on the balanced datasets (Table 3, “Total
balanced”) were the best at separating between destabilizing and
stabilizing variants, while those with a poor correlation also showed a
poor discriminative power. The AUC scores “Destabilizing-Stabilizing” of
the Bastolla-Vendruscolo potential, the Skolnick potential, the logarithm
of the conservation ratio and the volume difference were all greater than
0.7, reflecting their high correlations on the balanced dataset. On the other
hand, the accessibility and the difference in hydrophobicity, which are
characterized by a low correlation on the balanced datasets
(0.08 and −0.18, respectively), also showed low AUCs when separating
destabilizing variants from stabilizing (0.55 and 0.6, respectively). The
Blosum evolutionary score, which was uncorrelated on the balanced
dataset, showed also random behaviour (AUC = 0.5) in separating the
destabilizing from the stabilizing variants and the two distributions were
not significantly different (p-value of Mann-Whitney test = 0.71). A non-
significant p-value (p = 0.4) was also observed for the difference in
hydrophobicity between stabilizing and neutral variants. This feature,

while being able to slightly separate the destabilizing variants from the
other two classes (AUC = 0.59 and AUC = 0.6), was not able to separate
stabilizing from neutral variants (AUC = 0.51).

The accessibility separated fairly well the neutral variants from the
other two classes, but not the destabilizing from the stabilizing (Figure 3),
suggesting that it should only be used as a modulator of the ΔΔG absolute
value. For the other best performing features, the two potentials and the
conservation showed sightly higher similarity between neutral and
stabilizing variants than between neutral and destabilizing, while the
volume difference showed an opposite trend (Figure 3).

3.4 Improving the predictions on the
stabilizing variants

We evaluated the effects of including or excluding the Blosum
evolutionary score, the difference in hydrophobicity and the
accessibility in a Random Forest predictor and in DDGun3D. The

FIGURE 3
Distributions of the features. Boxplots showing the distributions of the features on the three classes. The variations are considered neutral if ΔΔG ∈[−0.5,
0.5], stabilizing if ΔΔG <−0.5 and destabilizing if ΔΔG > 0.5. For each pair of classes we computed the Mann-Whitney-Wilcoxon test two-sided to establish the
difference in the distributions. The p-values are reported here in a compact way: “ns” - p > 0.05, * - 0.01 < p ≤ 0.05, ** - 1.0e−03 < p ≤ 0.01, *** - 1.0e−04 < p ≤
1.0e−03, **** - p ≤ 1.0e−04, the actual values of the p-values are in Tab.4.
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aim of this analysis was not to outperform existing methods, but to
analyze how the combination of these variable affects the predictions
on the different classes.

Table 5 shows the results obtained by these two predictors when
using three possible sets of features: “all variables”, “reduced”, “red-no-
acc”. “Reduced” includes all variables except for Blosum evolutionary
score and difference in hydrophobicity, while “red-no-acc” also
excludes the accessibility.

The results show that, excluding the Blosum evolutionary score
and difference in hydrophobicity, the correlation decreases on the
destabilizing class for both methods: ρ = 0.32 for DDGun3D and ρ =
0.28 for Random Forest with “all variables”, compared to ρ = 0.29 and
0.27 with the “reduced” set. The same behaviour in the two predictors
was observed when the “red-no-acc” set was considered. Given the
high unbalance in S669 towards destabilizing mutations, with
387 variants being destabilizing and only 85 being stabilizing, the
decreasing performance on the destabilizing variants affects the overall
correlation on the whole dataset too.

Removing the Blosum evolutionary score and the difference in
hydrophobicity, however, increases the correlation on the stabilizing
class, as expected. In addition, the correlation increases when we also
remove the accessibility from the Random Forest predictor’s features
(ρ = 0.19 vs. ρ = 0.15), but not when DDGun3D is used (ρ = 0.15 vs. ρ =
0.13). However, it is worth noticing that, while in the Random Forest
predictor the accessibility is used as any other feature, in DDGun3D it
is used as modulator of the ΔΔG (see Eqs 6, 7). Indeed, using the
Random Forest predictor, the additional removal of the accessibility
improves the performance with respect to the removal of only the
Blosum evolutionary score and the difference in hydrophobicity (ρ =
0.19 vs. ρ = 0.16), while for DDGun3D this additional removal
negatively affects the correlation (ρ = 0.15 vs. ρ = 0.17).

4 Discussion and conclusion

Our study is based on the observation that none of the tools
available to predict the ΔΔG is very accurate on the stabilizing variants
and, in general, the predictions are skewed towards neutral and
destabilizing variations. The existing datasets for ΔΔG prediction
share a large number of variants and are strongly unbalanced
towards the destabilizing variants (Table 1; Figure 2). For this
reason, choosing features that favour only the most abundant class
can lead to a good overall performance at the cost of penalizing the
prediction of the less abundant class.

To better understand the weakness in correctly predicting the
stabilizing variants, we evaluated seven properties commonly used by
the computational ΔΔG predictors. We considered two features based
on physical properties (hydrophobicity and volume), three structural
information and conservation-based features (Blosum evolutionary
score, conservation and relative solvent accessibility) and two
statistical potentials-based features (Skolnick potential and Bastolla-
Vendruscolo potential). For each of them, we analyzed the ability to
predict the experimental ΔΔG by computing the Pearson’s correlation
coefficient (ρ) between them and the experimental ΔΔGs of three of the
most used dataset (S2648, VariBench and Ssym) and a recently-released
one (S669), all combined in the S4428 dataset. We also computed the
AUC-ROCs for each variant to judge how these features separate the
different classes of variations. The results showed that the volume
difference, the logarithm of the conservation ratio, and the statistical

potentials are better than random in each possible separation,
i.e., destabilizing vs neutral, destabilizing vs stabilizing and neutral vs
stabilizing variants. On the other hand, the difference in hydrophobicity,
the Blosum evolutionary score and the accessibility likely showed
random results in at least one of the separations. Although
hydrophobicity difference has an anti-correlation trend in the
balanced dataset (ρ = −0.18), it cannot separate the neutral variants
from the stabilizing ones (AUC-ROC = 0.51 ± 0.02), and it has marginal
ability to separate destabilizing fromneutrals (AUC-ROC= 0.59 ± 0.02).
Thus, hydrophobicity difference alone can contribute to entangling
stabilizing and neutral variants at prediction time. In turn, this may lead
to enforce the role of the destabilizing variants during the method
training.

Due to the symmetry of the Blosum evolutionary score, it is not
surprising that the AUC-ROC in separating destabilizing and
stabilizing variants was 0.5 ± 0.02. However, the score also failed to
separate the other two classes from the neutral ones (AUC-ROCs =
0.58/0.42 ± 0.02), which could lead to predictions skewed towards the
neutral class.

The accessibility is actually fairly good at separating the neutral
from the other two classes (AUC-ROCs = 0.69/0.36 ± 0.02), but not
the destabilizing from the stabilizing (AUC-ROC = 0.55 ± 0.02).
Accessibility is then a good marker of the general impact of a
variation (being them stabilizing or destabilizing) since its absolute
value of ρ on the stabilizing variants (|ρ| = 0.21) is one of the highest
among the considered features.

Among the seven features, the logarithm of the conservation ratio
best described the stabilizing variants (ρ = −0.21), consolidating the
known important role of the conservation in the impact of the genetic
variants. Moreover, the logarithm of the conservation ratio and the
volume difference showed the smallest drop in correlation between
destabilizing and stabilizing variants (Tab.3). The other two best
performing features, the Bastolla-Vendruscolo potential and the
Skolnick potential, showed a bigger drop in correlation, even though
the Bastolla-Vendruscolo potential by itself reached a correlation of ρ =
0.45 on the full dataset, which is not that far off from the results that
many predictors get using way more features and information.

We tested the impact of removing Blosum62, hydrophobicity and
accessibility (the three worst features at separating the stabilizing
variants from the rest) on prediction by examining two models:
DDGun3D, a mostly linear ΔΔG predictor with limited interaction
between features and a Random Forest, a fully non-linear generic
method. Independently from the predictor used, dropping out
Blosum62 and hydrophobicity improves the performance on
stabilizing variants at the cost of a loss on destabilizing ones.

This is not surprising for a linear model where each feature has a
fixed and independent effect on all variants. On the other hand, a more
powerful method like Random Forest, that can model interactions and
varying non-linear effects, could be able to use these features
(Blosum62 and hydrophobicity) selectively only for the non-
stabilizing variants for which they are informative. However, our
tests suggest that, in practice, including them can be harmful for
stabilizing variant prediction regardless of the model.

On the other hand, the behaviour of the accessibility is more
complex since the less accessible residues tend to have a higher impact
than the accessible ones. In some way, accessibility can modulate the
stability effect as, without it, the performance on the stabilizing
variants improves in the Random Forest model but worsens in
DDGun3D when it is not used as a shrinking effect (Table 5). This
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result also agrees with previous studies that led to the tool
PopMusic2 (Dehouck et al., 2011).

Our results suggest not incorporating the substitution matrix score
(e.g., Blosum62) and the difference in hydrophobicity in future predictive
computational tools, while using the difference in accessibility only to
modulate the impact of the variant. Furthermore, we suggest using the
features that better separate the stabilizing from the neutral variants (such
as the Bastolla-Vendruscolo potential, the logarithm of the conservation
ratio and the volume difference) to avoid the compression of the
predictions towards the neutral values. Finally, new tools should also
be tested on not-artificially balanced datasets, reporting the performance
specifically for each variant class.
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