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Abstract
Evolutionary information is the primary tool for detecting functional conservation in nucleic acid and protein. This informa-
tion has been extensively used to predict structure, interactions and functions in macromolecules. Pathogenicity prediction 
models rely on multiple sequence alignment information at different levels. However, most accurate genome-wide variant 
deleteriousness ranking algorithms consider different features to assess the impact of variants. Here, we analyze three dif-
ferent ways of extracting evolutionary information from sequence alignments in the context of pathogenicity predictions at 
DNA and protein levels. We showed that protein sequence-based information is slightly more informative in the annotation of 
Clinvar missense variants than those obtained at the DNA level. Furthermore, to achieve the performance of state-of-the-art 
methods, such as CADD and REVEL, the conservation of reference and variant, encoded as frequencies of reference/alternate 
alleles or wild-type/mutant residues, should be included. Our results on a large set of missense variants show that a basic 
method based on three input features derived from the protein sequence profile performs similarly to the CADD algorithm 
which uses hundreds of genomic features. As expected, our method results in ~ 3% lower area under the receiver-operating 
characteristic curve (AUC). When compared with an ensemble-based algorithm (REVEL). Nevertheless, the combination of 
predictions of multiple methods can help to identify more reliable predictions. These observations indicate that for missense 
variants, evolutionary information, when properly encoded, plays the primary role in ranking pathogenicity.

Introduction

High-throughput sequencing technologies have changed 
our daily research by rapidly accumulating genomic data 
and helping to profile patient genomes (MacArthur et al. 
2014; Claussnitzer et al. 2020). These studies make variant 
interpretation a fundamental challenge in precision medicine 
(Fernald et al. 2011; Capriotti et al. 2012; McInnes et al. 
2021). Missense variants by changing a single amino acid in 
a protein sequence can be neutral or induce loss of function.

In the last 2 decades, several methods have been devel-
oped to prioritize functional missense variants relying on 

protein sequence/structure information (Tennessen et al. 
2012; Niroula and Vihinen 2016; Ancien et al. 2018; Pet-
rosino et al. 2021) and the protein interaction networks (Rost 
et al. 2016; Capriotti et al. 2019; Ozturk and Carter 2021).

It is widely accepted that evolutionary information 
encoded in multiple sequence alignments of DNAs and 
proteins is a major resource for scoring variant pathogenic-
ity. Several methods for scoring the nucleotide and amino 
acid conservation have been defined (Schneider 1997; Val-
dar 2002). Although there is no rigorous test for judging a 
conservation measure, in general, quantitative conservation 
measures are site-specific scores calculated from a vector 
representing the relative frequency of the amino acids or 
nucleotides in a given position of a multiple sequence align-
ment. Among the most commonly used scores are those cal-
culating the Euclidean distance between two sets of amino 
acid frequencies (Valdar 2002) and Shannon’s information-
theoretic entropy (Capra and Singh 2007). Such site-specific 
scores, which are important for identifying functionally 
conserved regions, do not explicitly depend on the pairs of 
wild-type and mutant nucleotides/amino acids observed in a 
specific mutation process. For scoring the pathogenicity of 
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a specific variation, we considered the most basic quantita-
tive measures calculating the frequency of the wild-type and 
mutant nucleotides/residues in a given site.

This paper evaluates the relevance of this information for 
missense variant predictions by comparing simple scores and 
simple predictors with the widely used and well-performing 
Combined Annotation-Dependent Depletion (CADD) algo-
rithm (Rentzsch et al. 2019) and REVEL (Ioannidis et al. 
2016).

We computed the conservation scores on DNA (Phast-
Cons100way and PhyloP100way), the frequencies of the 
reference and alternative alleles in the genome, and frequen-
cies of the wild-type and mutant residues in protein multiple 
alignments. Our analysis showed that a machine-learning 
method trained on a few sequence conservation features at 
DNA or protein levels, achieves similar performance of a 
state-of-the-art algorithm. In this work, we compared the 
performance of CADD and REVEL with those reached by 
three different basic gradient boosting algorithms on a set of 
missense variants from the Clinvar database. Our result indi-
cates that the evolutionary information provides the main 
features for scoring the pathogenicity of missense variants.

Materials and methods

Datasets

To evaluate the performance of different machine-learning 
methods for predicting the pathogenicity of missense vari-
ants, we collected two datasets from the Clinvar database 
(Landrum et al. 2020). For building the two datasets, we 
considered two versions of Clinvar released in June 2020 
and August 2021, respectively. The first dataset (Common-
Clinvar) consists of the missense variants annotated as Path-
ogenic and Benign in both versions of the database while 
the second dataset (NewClinvar) collects the new missense 
variants reported in the last version of Clinvar since June 
2020 (Fig. S1). The variants reported in the older version 
of Clinvar not confirmed in the last version were discarded. 
Thus, the CommonClinvar consists of 36,751 missense vari-
ants from 7582 proteins 53.5% of which are annotated as 
Benign and the remaining ones (46.5%) as Pathogenic. New-
Clinvar, which includes only the newly annotated variants, 
is composed of 5172 from 1855 proteins 43.4% of which are 
reported as Benign and 56.6% as Pathogenic. The composi-
tion of the two datasets is summarized in Table S1. Both 
CommonClinvar and NewClinvar datasets are available as 
supplementary files.

Conservation features

In this work, we analyzed the performance in the prediction 
of pathogenic variants using three basic methods based on 
sequence conservation features. Each method considers only 
three input features, which are described as follows.

As a baseline, we implemented a method considering two 
site-specific conservation scores (PPScore) calculated on a 
genome level multiple sequence alignment and made avail-
able through the UCSC genome browser (Kent et al. 2002). 
The conservation scores used in the first method are calcu-
lated by PhastCons (Siepel et al. 2005) and PhyloP (Pollard 
et al. 2010) algorithms.

In the second method (DNAProf), the frequencies of 
the reference and alternative alleles in the mutated site are 
calculated for each variant from the multiz100way multi-
ple sequence alignments. The PhastCons100 and PhyloP-
100way scores as well as the multiz100way alignments for 
the hg38 human reference genome are available at https://​
hgdow​nload.​cse.​ucsc.​edu/​golde​npath/​hg38/.

In the third method (ProtProf), we calculated the frequen-
cies of the wild-type and mutant residues in the mutated sites 
for each mutation. These frequencies are derived from the 
BLAST (Altschul et al. 1997) search alignments against the 
UniRef90 database (Suzek et al. 2007) released in June 2020. 
For the BLAST search, we used an e-value cutoff of 10–9 as 
suggested in previous works (Capriotti et al. 2006, 2013, 
2017; Calabrese et al. 2009). By definition, the E-value rep-
resents the number of expected hits found by chance and 
depends on the number of sequences in the database. In our 
case, selecting an E-value threshold of 10–9 for a BLAST 
search on UniRef90, which contains ~ 10–8 sequences, 
ensures that less than one random hit can be found by chance 
from our search.

In summary, for each mutated loci, we considered the 
PhastCons100way (PC) and PhyloP100way (PP), the fre-
quencies of the reference (fref) and alternative (falt) alleles 
from the multiz100way multiple sequence alignment, and 
the total number of aligned genomic sequences (Ng). For 
the protein-based method, the protein sequence profile was 
obtained considering the sequences returned by BLAST. For 
each mutated site, we calculated the frequencies of wild-type 
(fwt) and mutant (fmut) residues and the number of aligned 
proteins (Np). The nucleotide and amino acid frequencies are 
calculated as follows:

where n(xi) is the number of the nucleotide or amino acid 
xi in the sequence alignment and k is equal to 5 (includ-
ing the generic nucleotide N) and 20 for DNA and pro-
tein sequences, respectively. Ng and Np represent the 
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denominators of the equation above for DNA and protein 
sequences, respectively.

Machine‑learning algorithms

Using the eight features described above, we develop three 
binary classifiers (PPScore, DNAProf, ProtProf) using the 
following groups of three features:

PPScore PhastCons100way (PC) and PhyloP100way 
(PP) scores, and number aligned genomic sequences (Ng) 
in multiz100way
DNAProf Frequencies of the reference (fref) and alterna-
tive (falt) alleles, and number aligned genomic sequences 
in multiz100way (Ng).
ProtProf Frequencies of the wild-type (fwt) and mutant 
(fmut) residues, and number aligned protein sequences 
(Np) from a BLAST search on UniRef90.

For each group of features defined above, we developed 
a binary classifier based on the gradient boosting algorithm 
as implemented in the scikit-learn package (Pedregosa et al. 
2011). The proposed groups of features are summarized in 
Table 1.

Training and testing procedure

We first evaluated the performance of each method on Com-
monClinvar using a tenfold cross-validation procedure for 
a fair evaluation of the proposed method performance. To 
reduce at the minimum the possible overfitting, we mapped 
each missense variant on the relative protein sequence and 
we clustered all the sequences using the blastclust algorithm 
(https://​ftp.​ncbi.​nih.​gov/​blast/​docum​ents/​blast​clust.​html) 
with a sequence identity threshold of 25% and a coverage 
of 50%. Using the clustering based on sequence similarity, 
we perform a tenfold cross-validation procedure keeping all 
the variants belonging to the same cluster in the same sub-
set. A second test is performed considering the NewClinvar 
dataset. In this case, the impact of the variants of a given 
protein is predicted excluding from the training set (Com-
monClinvar) all the variants belonging to proteins of the 
same cluster. We extracted a balanced set of Pathogenic and 
Benign variants from CommonClinvar and NewClinvar data-
set for each test, randomly downscaling the most abundant 

class. The reported scoring measures for all the methods are 
averaged over ten randomly selected sets.

Benchmarking and performance measures

To characterize the prediction power of the main features 
described in this work, for each of them, we developed a 
single feature binary classifier based on a single threshold. 
For each feature, the classification threshold is optimized 
on the CommonClinvar dataset maximizing both the true-
positive and true-negative rates. The optimized threshold is 
tested in the classification of the NewClinvar variant dataset.

Finally, the performances of all the binary classifiers 
described above are compared with those achieved by the 
CADD (Rentzsch et al. 2019) and REVEL (Ioannidis et al. 
2016) algorithms. The optimized raw score threshold for the 
classification of CADD output was calculated on the Com-
monClinvar dataset as binary classifier. The performances of 
the methods are scored considering two subsets of the New-
Clinvar dataset including the consensus predictions (Con-
sensus) and those with at least one predictor in disagreement 
with the remaining ones (NotConsensus).

All the measures considered for scoring the performance 
of the methods are defined in Supplementary Materials.

Results

Feature analysis and single feature classification

In the first part of our work, we analyzed the distributions of 
the main features used for the classification task. We focused 
on the six conservation features (PC, PP, fref, falt, fwt, fmut) 
comparing their distributions for the subsets of Pathogenic 
and Benign variants. The average, median and standard 
deviation of such distributions are reported in Table S2. As 
observed in previous works (Kircher et al. 2014; Capriotti 
and Fariselli 2017), the distribution of the PhyloP100way 
score (PP) in mutated loci associated with Pathogenic and 
Benign variants are significantly different (Fig. 1). Indeed, 
the two distributions show median values of 7.5 and 1.5, 
respectively, with a Kolmogorov–Smirnov distance (DKS) of 
0.57 (Fig. 1B and Table S2). This distance is greater than the 
DKS observed for the PhastCons100way score (PC).

A higher difference between the distributions of the con-
servation scores for the subset of Pathogenic and Benign 
variants is observed when the frequencies in sequence pro-
file from genomic and proteins are considered. The most 
remarkable differences are generally detected when com-
paring the distributions of the frequency of the alternative 
allele (falt) and the mutant residue (fmut) for which the DKS 
is ~ 0.60. Analyzing the frequencies of the reference allele 
(fref) and wild-type residue (fwt) their DKS is 0.58 and 0.55, 

Table 1   Three groups 
of features used for the 
development of the binary 
classifiers

Group Features

PPScore PC PP Ng

DNAProf fref falt Ng

ProtProf fwt fmut Np

https://ftp.ncbi.nih.gov/blast/documents/blastclust.html
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respectively (Table S2). The distributions of the four types 
of frequencies (fref, falt,, fwt, and fmut) for the subsets of Patho-
genic and Benign variants are plotted in Fig. 2

This observation agrees with the results obtained in the 
prediction of Pathogenic variants using a classification 

threshold on a single feature. The classification threshold is 
optimized on the CommonClinvar dataset maximizing both 
the true-positive and -negative rates (Table S3). Applying 
the optimized thresholds on the prediction of the variants 
in the NewClinvar dataset, we found that a simple classifier 

Fig. 1   (A) Box plot and (B) cumulative distributions of the PhyloP-
100way score in the variation sites for the subsets of Pathogenic and 
Benign variants in the CommonClinvar dataset. The maximum dis-

tance between the two distributions is at 4.7 that corresponds to a 
Kolmogorov–Smirnov distance of 0.57

Fig. 2   Box plots and cumulative distributions of the frequencies of 
references (A, E)/alternative (C, F) alleles in the variation sites and 
the frequencies of wild-type (B, G)/mutant (D, H) residues in protein 
mutation sites for the subset of Pathogenic and Benign variants in the 

CommonClinvar dataset. In the cumulative distribution plot (E, F, G, 
H), the Kolmogorov–Smirnov distance (DKS) which represents the 
maximum distance between the distributions of the frequencies for 
Pathogenic and Benign variants is reported
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based on the frequency of the mutant residue extracted from 
a protein sequence profile achieve 81% overall accuracy 
(Q2), 0.63 Matthews correlation coefficient (MCC) and an 
Area Under the Receiver-Operating Characteristic Curve 
(AUC) of 0.86 (Table 2).

According to the previous observation, the PhastCon-
s100way score (PC) is the least discriminating feature. 
When using the optimized threshold on the classification 
of the NewClinvar variants, the method based on a single 
PC threshold achieves 74% overall accuracy, 0.49 MCC 
and 0.75 AUC (Table 2). Slightly lower performances are 
obtained when the frequencies of the reference allele and the 
wild-type residue in the sequence profile are considered. In 
this case, the method based on a single fref threshold results 
in 78% Q2, 0.56 MCC and 0.84 AUC. These results can also 
be observed plotting the Receiving-Operating Characteristic 
(ROC) and Precision-Recall (PR) curves reported in Fig. S2.

Assessment of the machine‑learning methods

Starting from the previous observations, we developed three 
machine-learning approaches based on the different groups 
of conservation features. The PPScore method is based on 
the PhastCons100way, PhyloP100way scores represent-
ing unique conservation measures not describing the type 
of nucleotides observed in the mutated loci. The other two 
methods consider the frequencies of the nucleotides or resi-
dues in the original and new sequences that correspond to 
fref, falt and fwt, fmut for DNAProf and ProtProf, respectively. 
To these groups of measures, we added a third feature repre-
senting the total number of sequences aligned in the mutated 
loci (Ng, Np). Although these values are not related to the 
conservation, they are considered as features for differenti-
ating cases of mutated loci aligned with low and high num-
ber of sequences. We implemented three machine-learning 
methods for predicting Pathogenic variants based on the gra-
dient boosting algorithm with these groups of features. First, 
the performance of these methods is tested with a tenfold 
cross-validation procedure on the CommonClinvar dataset. 
To avoid possible overfitting, we clustered all the proteins 

based on the sequence identity and grouped all their variants 
in a unique subset. The average performance of PPScore, 
DNAProf and ProtProf on a balanced set of Pathogenic and 
Benign variants is reported in Table S4. The results show 
that among the three methods ProtProf, which is based on 
protein sequence profile, achieved the highest performance 
reaching 83% overall accuracy (Q2), 0.67 Matthews correla-
tion coefficient and 0.91 Area Under the Receiver-Operating 
Characteristic Curve (AUC). PPScore which is based on 
PhastCons100way, PhyloP100way show the lowest perfor-
mance resulting in ~ 4% lower AUC and ~ 9% lower MCC. 
An intermediate level of performance is achieved by DNAP-
rof which results in ~ 2% lower AUC and ~ 3% lower MCC 
with respect to ProtProf. Similar results are obtained when 
assessing the performance of the three methods on the New-
Clinvar dataset. In addition, in this case, we predicted the 
impact of each variant removing from the training set all 
the variants in the CommonClinvar training set belonging to 
the same cluster of proteins. The performance of PPScore, 
DNAProf and ProtProf on a balanced set of variants from the 
NewClinvar dataset is summarized in Table 3. For scoring 
the contribution of Ng and Np to the predictions of the three 
methods, we removed such features from the input and com-
pared their performances. The results reported in Table S5 
show that the methods improve their performance by ~ 1% 
for MCC and AUC indices considering Ng and Np in the 
input features.

Comparison with CADD and REVEL algorithms

In the final part of our analysis, we compared the perfor-
mance of our simple gradient boosting-based algorithms 
with those obtained with CADD (Rentzsch et al. 2019) and 
REVEL (Ioannidis et al. 2016). REVEL (Rare Exome Vari-
ant Ensemble Learner) is an ensemble method for predict-
ing the pathogenicity of missense variants on the basis of 
13 individual tools. When tested on independent test sets, 
REVEL shows the best overall performance as compared 
to any of the individual tools and 7 previously developed 
ensemble methods. CADD is one of the most accurate and 

Table 2   Performance of basic 
predictors based on a single 
feature on the NewClinvar 
dataset Prediction threshold 
are optimized on the 
CommonClinvar dataset

Q2 overall accuracy, TNR true-negative rate, NPV negative predicted value, TPR true-positive rate, PPV 
positive predicted value, MCC Matthews Correlation Coefficient, F1 harmonic mean of precision and sen-
sitivity, AUC​ area under the receiver operator characteristic curve, AUP area under the precision recall 
curve. All the performance measures are defined in Supplementary Materials

Feature Threshold Q2 TNR NPV TPR PPV MCC F1 AUC​ AUP

PC 1.000 0.737 0.611 0.816 0.862 0.689 0.489 0.766 0.755 0.815
PP 4.704 0.769 0.796 0.756 0.743 0.784 0.539 0.763 0.841 0.828
fref 0.977 0.779 0.815 0.760 0.742 0.801 0.559 0.770 0.836 0.843
falt 0.000 0.794 0.750 0.821 0.837 0.770 0.589 0.802 0.828 0.863
fwt 0.702 0.769 0.806 0.750 0.731 0.791 0.539 0.759 0.844 0.836
fmut 0.005 0.815 0.819 0.812 0.810 0.817 0.629 0.814 0.857 0.856
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popular methods for predicting Pathogenic variants in cod-
ing and non-coding regions (Benevenuta et al. 2021). This 
method, which is based on more than hundreds of genomic 
features, was trained on more than 30 million variants. To 
use CADD as a binary classifier, we considered the raw 
output of the program and we selected the threshold that 
maximizes the true-positive and -negative rates on the Com-
monClinvar dataset. The performance of CADD at the opti-
mal raw score classification threshold of 3.1 is reported in 
Table S4. This threshold was used for the classification of 
the variants in the NewClinvar dataset. The performances 
of CADD and REVEL on the NewClinvar dataset are sum-
marized in Table 3. This analysis shows that CADD and 
ProtProf algorithms result in a similar performance in the 
classification of Pathogenic missense variants in terms of 
Area Under the Receiver-Operating Characteristic (AUC) 
and Precision-Recall (AUP) curves on both CommonClinvar 
and NewClinvar datasets. As expected, REVEL outperforms 

ProtProf and CADD reaching ~ 3% higher overall accuracy 
(Q2) and AUC. We can also observe that DNAProf which 
is based on the sequence profile extracted from the mul-
tiz100way sequence alignments results only in ~ 3% lower 
AUC and AUP. The Receiver-Operating Characteristic and 
Precision-Recall curves for CADD, REVEL and the three 
methods presented in this manuscript are plotted in Fig. 3.

Analysis and comparison of the predictions

To better understand the difference among the presented 
methods, we compared the predictions of three gradient 
boosting-based algorithms (PPScore, DNAProf and Prot-
Prof). For performing this analysis, we defined two subsets 
of the NewClinvar dataset: the Consensus subset where the 
three predictions agree and the NotConsensus subset where 
the predictions differ. When performing such comparison, 
we observe that predictions overlap in ~ 73% of the cases in 

Table 3   Testing prediction on 
the NewClinvar variant dataset

All the performance measures are defined in Supplementary Materials. For CADD, a raw score classifica-
tion threshold of 3.1 was considered
Q2 overall accuracy, TNR true-negative rate, NPV negative predicted value, TPR true-positive rate, PPV 
positive predicted value, MCC Matthews Correlation Coefficient, F1 harmonic mean of precision and sen-
sitivity, AUC​ area under the receiver operator characteristic curve, AUP area under the precision recall 
curve. All the performance measures are defined in Supplementary Materials

Method Q2 TNR NPV TPR PPV MCC F1 AUC​ AUP

CADD 0.844 0.821 0.860 0.867 0.829 0.688 0.847 0.911 0.905
REVEL 0.871 0.918 0.843 0.825 0.909 0.747 0.865 0.945 0.942
ProtProf 0.831 0.865 0.809 0.796 0.855 0.662 0.824 0.910 0.905
DNAProf 0.812 0.780 0.834 0.845 0.794 0.626 0.818 0.881 0.873
PPScore 0.771 0.776 0.769 0.767 0.774 0.543 0.770 0.855 0.846

Fig. 3   Receiver-Operating Characteristic (A) and Precision-Recall (B) curves for the different gradient boosting algorithms (PPScore, DNAProf, 
ProtProf), CADD and REVEL on the NewClinvar dataset
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the NewClinvar dataset (Fig. 4A), while in the remaining 
23% a single predictor differs from the other.

ProtProf and DNAProf provide the highest prediction 
similarity, agreeing in 88% of the cases with a correlation 
of 0.75 (Fig. 4C). In terms of performance, when focus-
ing on the Consensus subset, the performance of ProtProf 

reaches 0.91 AUC and 0.81 Matthews correlation, while on 
the remaining subset, all the methods show an AUC < 0.65 
and PPScore results on AUC < 0.5 (Table 4). The decrease in 
the performance can be explained by comparing the distribu-
tion of the frequencies of the wild-type and mutant residues 
on the Consensus and NotConsensus subsets. Indeed, the 

Fig. 4   Overlap of the predictions of the different methods on the 
NewClinvar dataset. A Venn diagram of the prediction of the 3 gradi-
ent boosting algorithms (PPScore, DNAProf, ProtProf) and B Venn 
diagram of the prediction of ProtProf, CADD and REVEL. C Pair-
wise overlap of the prediction of the 3 gradient boosting algorithms 

and D Pairwise overlap of the prediction of the ProtProf, CADD and 
REVEL. The numbers above the diagonal represent the fraction of 
common predictions while those below the diagonal are the correla-
tions between the predictions

Table 4   Performance of 
PPScore, DNAProf and 
ProtProf on two subsets of the 
NewClinvar dataset

Consensus Subset of NewClinvar (72.6%) for which the predictions of the three methods are in agreement, 
NotConsensus subset of NewClinvar (27.4%) for which one method differs from the remaining two
Q2 overall accuracy, TNR true-negative rate, NPV negative predicted value, TPR true-positive rate, PPV 
positive predicted value, MCC Matthews Correlation Coefficient, F1 harmonic mean of precision and sen-
sitivity, AUC​ area under the receiver operator characteristic curve, AUP area under the precision recall 
curve. All the performance measures are defined in Supplementary Materials

Method Subset Q2 TNR NPV TPR PPV MCC F1 AUC​ AUP

ProtProf Consensus 0.905 0.907 0.909 0.904 0.901 0.810 0.902 0.905 0.929
ProtProf NotConsensus 0.633 0.740 0.577 0.542 0.712 0.286 0.615 0.641 0.735
DNAProf NotConsensus 0.567 0.402 0.536 0.706 0.583 0.113 0.639 0.554 0.665
PPScore NotConsensus 0.418 0.385 0.369 0.445 0.461 − 0.170 0.453 0.415 0.561
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Kolmogorov–Smirnov distance (DKS) of the distributions 
of fwt and fmut decrease by ~ 50% when considering the 
NotConsensus subset (Fig. 5).

A similar analysis is performed comparing the predictions 
of ProtProf, CADD and REVEL. Here, the predictions of 
the three algorithms overlap in ~ 75% of the cases (Fig. 4B) 
with an average of ~ 83% of common predictions and a 
correlation of ~ 0.68 for pairwise comparison (Fig. 4D). 
The performance of the methods on the Consensus sub-
sets achieves ~ 95% in terms of overall accuracy and ~ 0.95 
AUC, while for the NotConsensus subset, the performance 
of CADD and ProtProf are similar to those of a random 
predictor. REVEL shows the best performance on this sub-
set of the NewClinvar dataset, achieving 67% Q2 and 0.68 
AUC (Table 5).

The analysis of the distributions of fwt and fmut on shows a 
DKS > 0.70 for the Consensus subset, while for the NotCon-
sensus it drops below 0.2 with both the distributions of the 
fwt and fmut for Benign and Pathogenic variants strongly 
overlapping (Fig. 6).

Conclusion and discussion

Here, we analyzed different evolutionary information 
encodings for missense variant pathogenicity predictions. 
We compared the encoding at DNA and protein levels, 
where different multiple alignments techniques apply. The 
multiple sequence alignment includes a larger number of 
proteins and more remote homologs for many genes than 

Fig. 5   Box plots and cumulative distributions of the frequencies of 
wild-type and mutant residues subset of NewClinvar for which the 
predictions of PPScore, DNAProf and ProtProf are in agreement (A, 
B, E, F) or in disagreement (C, D, G, H). In the cumulative distri-
bution plot (E, F, G, H), the Kolmogorov–Smirnov distance (DKS) 

which represents the maximum distance between the distributions 
of the frequencies for Pathogenic and Benign variants is reported. 
Average and standard deviations of the distributions are reported in 
Table S6

Table 5   Performance of 
REVEL, CADD and ProtProf 
on two subsets of the 
NewClinvar dataset

Consensus: Subset of NewClinvar (75.5%) for which the predictions of the three methods are in agreement. 
NotConsensus: subset of NewClinvar (24.5%) for which one method differs from the remaining two
Q2 overall accuracy, TNR true-negative rate, NPV negative predicted value, TPR true-positive rate, PPV 
positive predicted value, MCC Matthews Correlation Coefficient, F1 harmonic mean of precision and sen-
sitivity, AUC​ area under the receiver operator characteristic curve, AUP area under the precision recall 
curve. All the performance measures are defined in Supplementary Materials

Method Subset Q2 TNR NPV TPR PPV MCC F1 AUC​ AUP

ProtProf Consensus 0.945 0.954 0.941 0.935 0.950 0.890 0.943 0.945 0.959
ProtProf NotConsensus 0.479 0.539 0.429 0.431 0.541 − 0.029 0.480 0.485 0.616
REVEL NotConsensus 0.662 0.777 0.589 0.570 0.763 0.350 0.653 0.674 0.760
CADD NotConsensus 0.531 0.337 0.458 0.684 0.565 0.022 0.619 0.510 0.628
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pre-calculated genome alignments from the UCSC genome 
browser. This condition can be the reason why the perfor-
mance of a method trained using the protein-based informa-
tion is slightly better. Thus, at least for the missense variants, 
an input based on evolutionary information of the wild-type 
and mutated residue performs better than evolutionary meas-
ures based on DNA sequence alignment in the prediction of 
pathogenic variants. Indeed, on the ~ 27% of the variants on 
which the predictions of our gradient boosting algorithms 
disagree, ProtProf reaches 6% high overall accuracy and 
9% higher AUC with respect to DNAProf which rely on pre-
calculated DNA sequence alignment from UCSC.

With these simple inputs based on evolutionary informa-
tion, a machine-learning method can perform comparably to 
CADD, which uses more sophisticated inputs. When com-
pared with an ensemble-based approach (RAVEL), our basic 
method (ProtProf) results in ~ 3% lower overall accuracy and 
AUC. Nevertheless, our analysis based on the comparison of 
the predictions of different methods allows the identification 
of a more reliable subset of predictions on which ProtProf 
reaches an overall accuracy above 90% and AUC > 0.9.

Recently, it has been suggested that protein positions 
have a significant role and can act as Neutral, Toggle or 
Rheostat (Miller et al. 2019). Here, we indicate an alter-
native view of protein positions that can be seen as a non-
linear combination of the frequencies of wild-type/mutant 
residues at protein level or reference/alternative allele at 
DNA level. The results of our analysis suggest that the 

performances of new and more sophisticated machine-
learning algorithms should always be compared with 
those achieved by simple conservation-based methods. As 
recently proposed (Walsh et al. 2021), the design of such 
benchmark tests should consider the adoption of specific 
guidelines for avoiding bias in the training and testing 
sets. This procedure is important to exclude overfitting 
on the context-dependent features (Grimm et al. 2015) 
and identify new important features for improving the 
performance of variant scoring algorithms.
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