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Chapter 3
Comparative 
modeling and 
structure prediction: 
application to drug 
discovery

Emidio Capriotti

More efficient high-throughput sequencing techniques are 
exponentially expanding the knowledge about the ensemble 
of proteins expressed by living organisms. At the same time, 
the determination of their 3D structure is still requiring 
expensive and time-consuming experiments. During the last 
few decades, the effort of the scientific community has 
allowed the crystallization of thousands of proteins, which 
have been resolved at the atomic level. Currently, the Protein 
Data Bank, the largest repository of protein structures, 
contains more than 88,000 macromolecular 3D structures. 
The computational analysis of this huge source of information 
revealed that during the evolution protein structure is more 
conserved than sequence. This finding constitutes the basic 
assumption behind most of the available bioinformatics 
algorithms for protein structure prediction. Among all the 
available prediction methods, those based on comparative 
modeling (CM) provide more accurate structures that can 
be used in large variety of applications, including ligand 
binding sites prediction and virtual screening. In this chapter, 
we summarize the theoretical basis and the main steps of 
CM. Finally, we describe their application to predict the 
structure of drug targets in important protein families.
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Basic concepts in protein structure prediction 
The classification of proteins requires three different levels of knowledge: 
sequence, structure and function. These three features are linked by rules 
that are still largely unknown. It is well known that the structure of the 
protein is encoded by its sequence. Indeed experimental studies have 
demonstrated that, after unfolding, the protein is able to assume its native 
3D conformation that is responsible for the function [1]. Previous analysis of 
limited protein structures showed that within the same family, protein 
sequence is less conserved than structure [2]. The limited number of possible 
protein folds confirms the hypothesis that multiple proteins, generally with 
a common ancestor, encode for similar 3D structures. According to this 
observation, the solution of the protein structure prediction problem is 
equivalent to find the correct relationship between the space of the 
sequences and an exhaustive catalog of protein folds. As a consequence of 
this, the structure of a new protein can be predicted using the structure of 
a protein with similar sequence. For this purpose, it is important to define 
quantitative rules describing the relationship between protein sequence 
and 3D structure. Therefore, protein sequence alignment became a valuable 
method to detect evolutionary related proteins and establish empirical 
procedures for protein structure prediction. In general, prediction algorithms 
based on the detection of similarities between the unknown protein (target) 
and a protein with available 3D structure (template) are referred to as 
template based. Alternatively the template-free approaches are needed to 
predict the structure of new folds. Template-free methods are mainly based 
on physicochemical principles and information from available 3D 
structures [3]. Although template-free methods have broad applicability, 
nevertheless, their predictions are still less accurate than template-based 
ones. In general, template-based approaches result in high-quality models 
comparable with native structures. High-quality predictions from 
comparative modeling (CM) can be used for several applications that include 

the prediction of drug-binding sites and 
virtual screening [4–6]. This chapter focuses 
on CM-based structure prediction and its 
application on the prediction drug targeted 
structures. 

Theoretical basis of CM
Protein 3D structure prediction is a hot topic 
in molecular biology. CM can be applied 
when exists a minimum level of sequence 
identity between the unknown protein 

Sequence alignment: computational method 
that maximizes similarity between biological 

sequences (DNA, RNA and proteins) to detect 
conserved regions as possible consequence of 
evolutionary relationships.

Target/template: terms that indicate the protein with 
unknown structure (target) and the available 
structure (template) used as a reference in 
comparative modeling. 

Comparative modeling: method for the prediction of 
protein 3D structure based on the sequence/structure 
similarity between target and template proteins.
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(target) and another protein (template) 
whose 3D structure is already available. CM 
is supported by the observations that small 
variations in protein sequence slightly affect 
protein 3D structure [2] and that accumulated 
mutations are constrained to conserve 
specific intra- and inter-molecular inter
actions in protein families and super
families [7]. The existence of highly 
conserved regions have been detected 
comparing 25 protein 3D structures from 
eight families [2]. The analysis of 32 pairwise alignments between homolog 
proteins revealed that for regions with sequence identity higher than 50%, 
more than 90% of Ca atoms can be superimposed with a root mean square 
deviation (RMSD) of approximately 1 Å, while for regions with approximately 
20% sequence identity less than 42% of the structure can be superimposed 
with an RMSD of approximately 3 Å [2]. In the same work, it was estimated 
the expected rate of successfully predicted residues as a function of the 
sequence identity between target and template. When larger number of 
3D structures became available, a more exhaustive study of the relationship 
between sequence and structure has been performed [8]. At the end of the 
1990s, the ‘twilight zone’ had been defined using 792 pairwise alignments 
between proteins with sequence identity lower than 25% (Figure 3.1). This 
corresponds to the low-identity region within which the sequence 
alignments between homolog proteins are similar to those between 
nonhomolog proteins. The curve separating the ‘twilight zone’ from the 
region of confident similarity has been estimated maximizing the separation 
between the alignments of true homologs from structurally related proteins 
and those of nonhomolog proteins. According to this classification, CM can 
be generally applied when the alignment between target and template falls 
in the region of confident similarity detection. This implies that for targets 
with no template in the confident region, the ‘twilight zone’ represents a 
limit to the application of CM. 

CM protocol
CM allows the prediction of the structure of the target protein using the 
structure of a protein template that has 
a detectable level of similarity between 
their sequences. Accordingly, CM protocol 
can be summarized into four main steps 
(Figure  3.2): selection of the template 

Twilight zone: region in the space of protein 
sequence similarity where standard alignment 

methods have higher failure rate in the detection of 
residue correspondences between target and 
template limiting the use of comparative modeling.

The application of comparative modeling is 
supported by the observations that small 

variations in protein sequence slightly affect 3D 
structure, therefore selected mutants conserve 
protein structure and function.

The application of comparative modeling to drug 
design and virtual screening is more accurate when 
multiple templates are available. In general, template 
structures representing active and inactive 
conformations of the protein are important to 
evaluate the plasticity of the target binding site. 
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structure; sequence alignment; model building and refinement; and 
evaluation of the predicted structures.

Selection of the template structure 
This step consists of the comparison between the target protein and a 
set of proteins with known structural features, searching for homologous 
proteins that are likely to have a similar structure. Template protein 
structures for this step are available at the Protein Data Bank [9], but 
faster searches can be performed on a reduced set from the Structural 

Classification of Proteins [10] and CATH [11] 
databases. The basic searching methods 
consist in pairwise alignments between 
target and template using BLAST (basic 
local alignment search tool) [12]. A further 
improvement of this search method is 

The selection of best template structure is a 
key step in comparative modeling. This task is 

highly inaccurate in the ‘twilight zone’ where standard 
alignment methods are not able to detect similarities 
between target and template proteins.

Figure 3.1. Twilight zone curve.
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the PSI-BLAST (position-specific iterative BLAST) algorithm that allows 
the detection of remote homolog proteins using iterative BLAST search. 
Recently developed methods implement profile-based algorithms, which 
include information from related proteins [13]. Among them, those using 
hidden Markov models, such as HHPred, are more accurate [14]. An 
overview about the available methods for the search of remote homologs 
has been previously published [15]. When multiple templates are available, 
the one with highest similarity score to the target is generally selected. 
Exceptions are possible when the aim of the predicted model is the study 
of interactions between protein and small ligand or the structure of active 
sites. In those cases, the templates including ligands and high-resolution 
structures are preferable. Therefore, the template selection is driven by 
considerations related to the problem the model has been built for. 

Sequence alignment
The alignment between protein target and temple is a critical step for 
establishing the correspondences between target and template residues. 
In general, sequence alignment methods implement dynamic-programming 
algorithms that use the BLOSUM (blocks substitution matrix) [16] and the 

Figure 3.2. Comparative modeling methods.
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PAM (point accepted mutation) [17] substitution scoring matrices. For 
proteins with high level of similarity, sequence alignment methods tend to 
return similar results. If the sequence identity drops down 40%, more 
accurate alignments should include structural information and multiple 
sequence alignments of homolog proteins. In this case the alignments 
obtained through automatic methods need to be manually checked.

Model building & refinement
In this step the 3D structure of the target protein is predicted using the 
correspondences between aligned residues obtained in the previous step. 
CM algorithms can be grouped in three classes: segment matching, rigid 
body assembly and spatial restraints satisfaction. These classes differ in the 
method used to transfer structure information from the template to the 
target. Rigid body assembling and segment matching use coordinates and 
conformations from conserved regions or matching peptides in the template 
structure. Methods based on spatial restraints transfer atomic restraints 
from the template protein to the equivalent atoms in the target protein, 
including a procedure that optimizes the search of the low-energy 
conformations minimizing the number of violated restraints. The predictions 
of loop and side-chain conformations represent the most difficult tasks. In 
particular, the structural variability of loop regions is caused by frequent 
residue insertions and deletions. Thus, specific methods have been 
implemented to predict loop and side-chain conformations. In the final step, 
the predicted structure is refined optimizing the conformations of the 
residues at the interface between nonconserved and conserved regions. 
This task can be performed by molecular dynamic (MD) simulations, which 
use an interatomic force field to improve the quality of predicted models.

Evaluation of the predicted structures
The evaluation of predicted 3D structures obtained by CM protocol consists 
of two steps: evaluation of geometry and the stereochemistry of the 
predicted model, and evaluation by statistical potentials [18]. The geometry 
of the predicted models is analyzed to check if bond distances and angles 
are correct and to avoid steric clashes. Methods based on statistical 
potentials evaluate the interactions of each atom in the model and compares 
them with the average atomic interactions in high-resolution structures. 

Although the theoretical bases of statistical 
potentials are still questioned, they are 
currently used for the model assessment 
and selection of high-quality predictions. 
Similar methods use standard MD simulation 

The quality of predicted structures is strongly 
dependent on the level of sequence similarity. 

Higher sequence similarity between target and 
template proteins generally results in more accurate 
models.
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force fields to evaluate the quality of predicted structures. Depending on 
the results of the evaluation, it is possible to repeat the first two steps 
selecting a better template or improving the sequence alignment. Thus, the 
prediction process can be iterated until the model obtains the best results 
in the evaluation step.

Examples of extensively used and freely available tools for CM are I-TASSER, 
MODELLER and Robetta. A selected list of available resources and methods 
and resources for CM are reported in Table 3.1.

CM for drug design
The knowledge of protein 3D structure information is key in drug design 
enabling the selection of a subset of ligands, which can potentially bind a 
given target. This procedure, referred to as virtual screening, is extensively 
adopted to reduce the cost of time-consuming and expensive assays for the 
design and repurposing of new therapeutics. The virtual screening procedure 
consists of the determination of binding-site residues where the ligand is 
docked and scored to estimate the binding affinity. The relative orientation 
between target and ligand is predicted by rigid-body or flexible docking of 
their 3D structures. The increasing computational power is making flexible 
docking more affordable allowing to sample different ligand-target 
conformations. In a recent work [19], a set of models for 21 x-ray protein–ligand 
complexes in CCDC/Astex test set [20] has been selected to estimate the 
expected quality of docking complexes obtained using predicted structures 
by CM. The results reveal that models with sequence identity higher than 
50% show a RMSD value lower than 2 Å with respect to experimental x-ray 
structures. In addition, for a large fraction of these models the local RMSD 
for the binding site atoms is also lower than 2 Å. These results confirm that 
state-of-the-art methods for structure prediction are effective tools for 
modeling the interactions between ligand and protein target.

In the following sections, the interesting cases of G-protein-coupled 
receptors (GPCRs) and protein kinases target families are discussed.

G-protein-coupled receptors
The GPCRs constitute the most abundant protein superfamily among 
transmembrane proteins. Sequence analysis algorithms revealed that 
approximately 800 human genes encode for proteins belonging to the GPCR 
superfamily (~4% of the human protein-coding genome). A classification 
scheme for GPCRs divided them in six main classes with low level of sequence 
similarity. Approximately 85% of GPCR genes encode protein in class A, also 
referred to as the rhodopsin family. Since GPCRs represent a large target 
family, accounting for 20–50% of approved drugs, the knowledge of their 3D 
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Table 3.1. Computational methods and resources for protein structure prediction.

Name URL

Repositories and resources for comparative modeling

ModBase http://modbase.compbio.ucsf.edu

Protein Model Portal www.proteinmodelportal.org

SWISS-MODEL Repository http://swissmodel.expasy.org/repository

Resources for GPCRs and protein kinases

GPCR Database www.gpcr.org/7tm

GPCR Research Database http://zhanglab.ccmb.med.umich.edu/GPCRRD

KinomeLHM http://cssb2.biology.gatech.edu/kinomelhm

Protein Kinase Resource http://pkr.genomics.purdue.edu

Structure and classification databases

CATH www.cathdb.info

Protein Data Bank www.pdb.org

Pfam http://pfam.sanger.ac.uk

Structural Classification of 
Proteins

http://scop.mrc-lmb.cam.ac.uk/scop

Template selection

Basic Local Alignment Search 
Tool

http://blast.ncbi.nlm.nih.gov/Blast.cgi

FASTA www.ebi.ac.uk/Tools/fasta

HHPred http://toolkit.tuebingen.mpg.de/hhpred

SAM-T08 http://compbio.soe.ucsc.edu/SAM_T08/T08-query.html

Threader http://bioinf.cs.ucl.ac.uk/threader

Sequence alignment methods

CLUSTALW www.ebi.ac.uk/Tools/msa/clustalw2

MAFFT http://mafft.cbrc.jp/alignment/server

MUSCLE www.drive5.com/muscle

T-Coffee www.tcoffee.org

GPCR: G-protein-coupled receptor.
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structure is extremely important for designing new drugs. Although recent 
advances have been made in the crystallization of new GPCRs the structural 
characterization of the whole superfamily is still incomplete. Therefore, the 
prediction of unknown GPCRs by CM is essential for the screening of new 
drugs. Since GPCRs share low level of sequence similarity the key step in CM 
is the selection of the best template. Currently high-resolution crystallographic 
data are available for 11 class A proteins (see Table 3.2) and one class B GPCR. 
The consistency of available templates makes CM suitable only for class A 
GPCRs. The bovine rhodopsin is the most studied structure for GPCR but 
unfortunately it is distant in sequence homology to other class A GPCRs. 
Thus, the use of rhodopsin x-ray structure as templates for CM can result in 
errors in the sequence alignment. Another challenging task in CM consists 
of the accurate prediction of the binding sites that can adopt different 
conformations depending on the function of the ligand. Recent studies of 
the binding regions of rhodopsin [21] and the b2-adrenergic receptor [22] 
provide important insight about the conformational changes related to their 
activation. Available templates for active and inactive states facilitate the 
application of CM to other GPCRs showing similar interactions. In contrast 
to these limitations in the prediction of GPCR structures using rhodopsin 
templates, successful examples proved that available biochemical insights 
improve the accuracy of predicted models. This type of information can be 
included as spatial restraints during the modeling procedure. The resolution 

Table 3.1. Computational methods and resources for protein structure prediction.

Name URL

Tools for comparative modeling

I-TASSER http://zhanglab.ccmb.med.umich.edu/I-TASSER

Modeller www.salilab.org/modeller

ModWeb https://modbase.compbio.ucsf.edu/scgi/modweb.cgi

Robetta http://robetta.bakerlab.org

SWISS-MODEL http://swissmodel.expasy.org

Methods for model evaluation

ANOLEA http://melolab.org/anolea 

DFIRE http://sparks.informatics.iupui.edu/yueyang/DFIRE

PROCHECK www.ebi.ac.uk/thornton-srv/software/PROCHECK

ProSa-web https://prosa.services.came.sbg.ac.at

QMEAN http://swissmodel.expasy.org/qmean

GPCR: G-protein-coupled receptor.
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of new GPCR structures and the characterization of their alternative 
conformations have been crucial for the understanding of the relationship 
between sequence and structure in the presence of different ligands. For 
example, the structure of CXCR4 adrenergic receptor showed a larger and 
more open binding site closer to the extracellular surface when compared 
with b2-adrenergic receptor and rhodopsin. Such differences make CXCR4’s 
binding region able to bound different ligands, suggesting a degree of 
variability in the local structures of GPCR binding regions. The systematic 
analysis of known GPCR structures indicated that they only represent a 
fraction of all the conformations assumed by class A GPCRs. Thus, the 
structural variability of the GPCRs suggests that more accurate predictions 
can be obtained using multiple templates. In addition, MD can be useful to 
sample alternative structural conformations and improve model refinement.

An interesting online resource for GPCRs structure prediction is the GPCRRD 
database, which collects experimental restraints from the literature. In the 
near future, it is expected that the increasing number of experimental data 
and available template structures will results in advancements in GPCR CM.

Protein kinases
The protein kinases constitute a large family of enzymes, accounting for 
approximately 2% of the human proteome. These proteins are involved 

Table 3.2. Class A G-protein-coupled receptor structures in the Protein Data Bank.

Protein name Protein Data Bank code

Rhodopsin 1F88, 1HZX, 1L9H, 1GZM, 1U19, 2HPY, 2G87, 2I35, 2I36, 
2I37, 2J4Y, 2PED, 2ZIY, 2Z73, 3CAP, 3C9L, 3C9M, 3DQB, 
3PXO, 3PQR, 2X72

Adenosine-A2A receptor 3QAK, 3EML, 2YDO, 2YDV

b1 adrenergic receptor 2VT4, 2Y00, 2Y02, 2Y03, 2Y04, 2Y01, 2YCW, 2YCX, 2YCZ, 
2YCY

b2 adrenergic receptor 2RH1, 2R4R, 2R4S, 3D4S, 3NYA, 3NY8, 3NY9, 3PDS, 
3P0G, 3SN6

CXCR4 chemokine receptor 3OE0, 3OE6, 3OE8, 3OE9, 3ODU

Dopamine receptor 3 3PBL

Histamine receptor 1 3RZE

M3 muscarinic acetylcholine receptor 4DAJ

Kappa opioid receptor 4DJH

Nociceptin/orphanin FQ receptor 4EA3

Sphingosine 1-phosphate receptor 3V2W
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in many cellular processes such as inflammation, differentiation, 
proliferation and apoptosis, and therefore they are targets of several 
therapeutic strategies. Data collected at the Protein Kinase Resource 
includes more than 450 3D structures, approximately 65% of which are 
humans. A recent estimation revealed that more than 500  different 
human protein kinases exists. A classification of kinases according to the 
sequence similarity of their catalytic domains grouped them into eight 
major kinase families and ‘others’ or ‘atypical’ groups, including all the 
remaining ones [23]. An alternative scheme based on substrate preferences 
divides protein kinases into serine/threonine, tyrosine, histidine and 
aspartic/glutamic kinases. The level of sequence/structural identities 
within the kinase families makes unsolved proteins ideal candidates for 
CM and for drug design. The activation state of the protein kinases is 
determined by the conformation assumed by activation loop. The two 
alternative states are characterized by different structural rearrangements 
of the catalytic site. Although many studies focused on the characterization 
of the active conformation, many inhibitors interact with the inactive 
forms that are highly variable across dissimilar kinases. The structural 
plasticity of the inactive site limits the application of CM in virtual 
screening because predicted structures based on the active conformation 
do not differ significantly from the templates. Even under this limitation, 
CM has been applied successfully to the prediction of protein kinases for 
nonvirtual and virtual screening. A recent work summarizes the results 
of a large-scale in silico screening of the whole human kinome using 
sequence profile alignments of ligand-free and ligand-bound 
conformations [24]. The computational analysis of approximately 2 million 
ligands resulted in the screening of approximately 5 million ligand-target 
complexes ranked by different scoring functions. The quality of the 
modeling procedure was evaluated comparing of structural predictions 
against the native structures of the active (holo) and the inactive (apo) 
forms of human kinases. The results showed an average RMSD of 2.7 Å 
and 3.1 Å, respectively, for the holo and apo conformations. The lower 
RMSD obtained for active versus inactive forms reflects the higher 
structural variability of templates in the holoconformations. The 
comparison of the kinase binding regions showed an RMSD of 
approximately 2  Å for the all atoms representation. This result is in 
agreement with the predicted plasticity of the binding site that allows 
members of the same kinase family to bind similar ligands.

Recent reviews describe the application of CM procedures for virtual 
screening [25,26]. Their effectiveness is demonstrated by successfully 
applications to GPCRs and protein kinases that have been reported [27,28]. 
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Conclusion & future perspective
Protein structure prediction by CM is largely used in many practical tasks. 
During the last years, the continuous improvement in overall accuracy of 
the predicted models has made virtual screening and drug design 
procedures more effective. The exponential increase of protein sequences 
from high-throughput technologies results in a higher number of 
predicted models that need to be evaluated with fast and accurate tools. 
In addition, the large amount of data generated by more powerful 
computational devices enables to perform exhaustive search in 
conformational space of target-ligand complexes. Therefore, it will be 
important to develop highly curated databases collecting both 
experimental and in silico data. In this direction is the ChEMBL 
database [101], which integrates chemical and genetic information for 
GPCRs and protein kinases. In the near future, it is expected that well-
curated and integrated structure data will be key for the selection of new 
potential targets and the development of new drugs.
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Summary. 

�� Comparative modeling is the most accurate method for protein structure prediction based on 
the sequence/structure similarities between the unknown protein (target) and a protein with 
known structure (template).
�� The application of comparative modeling is limited by the level of sequence similarity between 

target and template. 
�� The twilight zone defines the region where the sequence/structure similarities between target 

and template are difficult to detect by standard alignment methods.
�� Comparative modeling consists of four main steps: template selection, sequence alignment, 

model building and model evaluation.
�� The quality of the predicted structure (model) strongly depends on the sequence similarity 

between target and template.
�� The selection of a good template is driven by considerations related to the resolution of the 

problem for which the model has been built for.
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