SUPPLEMENTARY MATERIALS

DDGun: an untrained predictor of protein stability changes upon amino acid variants

Ludovica Montanucci¹[†], Emidio Capriotti²[†], Giovanni Birolo³, Silvia Benevenuta³, Corrado Pancotti³, Dennis Lal¹ and Piero Fariselli³*

- ¹ Genomic Medicine Institute, Lerner Research Institute Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
- ² BioFolD Unit, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via F. Selmi 3, 40126 Bologna, Italy.
- ³ Department of Medical Sciences, University of Torino, Via Santena 19, 10126, Torino, Italy.

* To whom correspondence should be addressed. Email: piero.fariselli@unito.it

+ Joint Authors.

Performance measures

For evaluating the performance of the methods in the regression task we compared the predicted (p) and experimental (e) values of the variation of unfolding free energy change upon mutation $(\Delta\Delta G)$.

The standard scoring values calculated in our assessment are the Pearson correlation coefficients (r) and the root mean square error (RMSE). They are defined as follows:

$$r = \frac{\sum_{i=1}^{N} \left(\Delta \Delta G_{e}^{-} - \overline{\Delta \Delta G}_{e}^{-} \right) \left(\Delta \Delta G_{p}^{-} - \overline{\Delta \Delta G}_{p}^{-} \right)}{\sqrt{\sum_{i=1}^{N} \left(\Delta \Delta G_{e}^{-} - \overline{\Delta \Delta G}_{e}^{-} \right)^{2}}} \qquad [1]$$

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} \left(\Delta \Delta G_{p}^{-} - \Delta \Delta G_{e}^{-} \right)^{2}}{N}} \qquad [2]$$

where $\underline{\Delta\Delta G_p}$ and $\underline{\Delta\Delta G_e}$ are the average predicted and experimental $\Delta\Delta G$ values respectively. In the case of antisymmetric datasets (Ssym) we calculated the Pearson correlation coefficient between direct and inverse predictions ($r_{dir.inv}$) and the average bias (δ) as follows:

$$r_{dir-inv} = \frac{\sum_{i=1}^{N} \left(\Delta \Delta G_{p}^{inv} - \overline{\Delta \Delta G_{p}^{inv}} \right) \left(\Delta \Delta G_{p}^{dir} - \overline{\Delta \Delta G_{p}^{dir}} \right)}{\sqrt{\sum_{i=1}^{N} \left(\Delta \Delta G_{p}^{inv} - \overline{\Delta \Delta G_{p}^{inv}} \right)^{2}}} \sqrt{\sum_{i=1}^{N} \left(\Delta \Delta G_{p}^{dir} - \overline{\Delta \Delta G_{p}^{dir}} \right)^{2}}}$$

$$\langle \delta \rangle = \frac{\sum_{i=1}^{N} \left(\Delta \Delta G_{p}^{dir} - \Delta \Delta G_{p}^{inv}} \right)}{N}$$
[3]

According to Equations 3 and 4, a perfect anti-symmetric method would yield $r_{dir-inv}$ value of -1 and $\langle \delta \rangle$ of 0 kcal/mol.

Dataset	PDBs	Mutants	Stabilizing	Destabilizing	
VariBench	79	1,432	388 (27.1%)	1044 (72.9%)	
S2648	132	2,648	602 (22.7%)	2,046 (77.3%)	
Ssym	357	684	342 (50.0%)	342 (50.0%)	
s669	96	669	170 (25.4%)	499 (74.6%)	
PTmul*	89	858	259 (30.2%)	599 (69.8%)	
s96	14	96	32 (33.3%)	64 (66.7%)	
m28	12	28	7 (25.0%)	21 (75.0%)	

Table S1. Composition of the data sets of experimental $\Delta\Delta G$.

Stabilizing variants are those with unfolding $\Delta\Delta G \ge 0$. * 1PGA mutations were excluded because the sequence profile is composed of a small number of sequences (≤ 10).

Tab. S2. Performances of DDGun and DDGun3D web server version
on previously collected data sets

Method	VariBench		S2648		S669	
	r	RMSE	r	RMSE	r	RMSE
DDGun	0.48	1.73	0.49	1.44	0.39	1.71
DDGun3D	0.54	1.70	0.57	1.34	0.42	1.59

r: is the Pearson's correlation coefficient between the predicted and experimental $\Delta\Delta G$ values; RMSE: root mean square error (expressed in kcal/mol); Measures of performance are defined above.

Method	Ssym						PTmul*	
	r dir	RMSEdir	r inv	RMSEinv	r dir-inv	$\langle \delta \rangle$	r	RMSE
DDGun	0.46	1.49	0.45	1.51	-0.99	-0.05	0.35	2.22
DDGun3D	0.55	1.42	0.52	1.46	-0.99	-0.05	0.38	2.24

Tab. S3. Performances of DDGun and DDGun3D web server on balanced (Ssym) and multiplevariant datasets

r: is the Pearson's correlation coefficient between the predicted and experimental $\Delta\Delta G$ values; RMSE: root mean square error (expressed in kcal/mol); $r_{dir-inv}$ is the Pearson correlation between direct and inverse variants. $\langle \delta \rangle$ is the average bias and is expressed in kcal/mol. Measures of performance are defined above. *1PGA mutations were excluded because the sequence profile is composed of a small number of sequences (≤10).