
CHAPTER SIX

Network-based strategies
for protein characterization
Alessandra Merlottia, Giulia Menichettib,c, Piero Farisellid,
Emidio Capriottie, and Daniel Remondinia,*
aDepartment of Physics and Astronomy, University of Bologna, Bologna, Italy
bCenter for Complex Network Research, Department of Physics, Northeastern University, Boston,
MA, United States
cDepartment of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston,
MA, United States
dDepartment of Medical Sciences, University of Torino, Turin, Italy
eDepartment of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
*Corresponding author: e-mail address: daniel.remondini@unibo.it

Contents

1. Introduction 217
2. The protein folding problem 218
3. Modeling folding kinetics 219
4. Protein structure representation 220
5. Contact maps and graph Laplacian 221
6. Protein folding state discrimination and Laplacian spectrum 222
7. A case study: Methods for protein 3D-structure reconstruction 224
8. Discussion 245
References 247

Abstract

Protein structure characterization is fundamental to understand protein properties,
such as folding process and protein resistance to thermal stress, up to unveiling organ-
ism pathologies (e.g., prion disease). In this chapter, we provide an overview on how the
spectral properties of the networks reconstructed from the Protein Contact Map (PCM)
can be used to generate informative observables. As a specific case study, we apply two
different network approaches to an example protein dataset, for the aim of discriminat-
ing protein folding state, and for the reconstruction of protein 3D structure.

1. Introduction

In the last decade several models describing a protein as a network of

interacting residues were used for characterizing the relationship between stru-

cture and function (Greene, 2012; Grewal & Roy, 2015; Yan et al., 2014).
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The studies of the protein contact network were used for detecting impor-

tant residues for protein stability and dynamics (B€ode et al., 2007; Brinda &
Vishveshwara, 2005; Taylor, 2013), active sites (Amitai et al., 2004) and

protein folding kinetics (Bagler & Sinha, 2007). In general, the works in

the field focus on the properties arising for the local and global topology

of the network (Bollobas, 1998). For the topological analysis, the distribu-

tion of the degree of nodes and the shortest paths among nodes are con-

sidered the main observables for the description of the protein structure.

In this work we analyzed the classical network analysis techniques for

the study of protein folding. In particular, we focus on the application

of the protein contact network analysis to the reconstruction of the pro-

tein three-dimensional structure and to the characterization of the protein

folding mechanism.

2. The protein folding problem

Protein folding is the process by which the polypeptide chain reaches

its native three-dimensional (3D) structure conformation. The Anfinsens’

experiments carried out in the 1970s lead to the conclusion that under favor-

able conditions, protein will fold consistently into its native structure which

is encoded in its amino acid sequence (Anfinsen, 1973). Although this view

of the folding mechanism has been challenged by new experimental evi-

dence (Dishman & Volkman, 2018), the large amount of crystallographic

data collected in the Protein Data Bank (wwPDB consortium, 2019) rein-

force the idea of the uniqueness of the folded conformation. The existence

of a stable and kinetically accessible native conformation of the proteins

determined by the amino acid sequence enhanced the development of

several theoretical models and computational methods for studying the pro-

tein folding mechanism (Compiani & Capriotti, 2013; Dill, 1990). The

majority of the available models and methods focus on three aspects of

the same problem related to the prediction of the native structure, the ther-

modynamics and the kinetics of the folding process (Dill et al., 2007; Dill &

MacCallum, 2012). The prediction of the protein structure from the amino

acid sequence is a challenging problem that drew the attention of the scien-

tific community at the end of the 1980s when few hundreds protein struc-

tures were made available on the Protein Data Bank (Fariselli et al., 2007).
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The seminal work fromChothia and Lesk studying the relationship between

protein sequence and structure found that homologous proteins retain the

same general fold (Chothia & Lesk, 1986). This observation laid the foun-

dation for the development of computational structure prediction methods

which rely on detectable similarity with known protein structures or ab initio

methods (Baker & Sali, 2001). During the last two decades the Critical

Assessment of Structure Protein (CASP) evaluated the quality of the predic-

tion algorithms tracking the progress in the field (Kryshtafovych et al., 2019).

Recently, a dramatic improvement of the performance in the prediction of

the protein 3D structure was driven by the successful application of deep

learning techniques (Senior et al., 2020). Although the prediction of the

native conformation of a protein from its sequence achieved an unprece-

dented level of performance, the folding mechanism description at thermo-

dynamic and kinetic levels is still incomplete. In the last few years statistical

and machine learning algorithms have been developed for predicting the

stability of a protein structure and the folding rate. Nevertheless, at the

current stage reliable and general models for describing the free energy land-

scape of the folding process are unavailable. In this context, several methods

have been developed for predicting protein stability and folding rate (Chang

et al., 2015; Magliery, 2015; Sanavia et al., 2020). These approaches rely on

protein 3D structure which is used to identify the interacting residues along

the amino acid sequence. Such information is essential for estimating the

stability of the native conformation and determining the mechanism of

the protein folding.

3. Modeling folding kinetics

The study of the folding kinetics is important for calculating the time

by which a protein reaches its native conformation and for identifying

the formation of metastable conformations during the folding process.

Thus, for the characterization of the folding kinetics were developed several

theoretical models based on a simplified representation of the protein struc-

ture (Compiani & Capriotti, 2013). Depending on the level of cooperati-

vity in the formation of the native conformation, the models of protein

folding were classified in three groups: hydrophobic collapse, nucleation–
condensation and framework models. The main differences among these
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models depend on the role played by the secondary structure in the forma-

tion of the native conformation. Among them, the Diffusion-Collision

model is one of the first quantitative models for predicting the folding time

(Karplus &Weaver, 1976). This hierarchical model represents the protein as

a set of partially formed secondary structure elements that reach the native

state through stochastic collision events. More recent models based on

non-local interactions between residues consider the static 3D of the protein

as a proxy for the prediction of the protein folding rate (Gromiha & Selvaraj,

2001; Ivankov & Finkelstein, 2004; Plaxco et al., 1998; Zhou & Zhou,

2002). These methods rely on the observation that the average sequence

separation between contacting residues in the native conformation correlates

with the folding rate and transition state of single-domain proteins. Thus, the

definition of interacting residues assumed an important role in the determi-

nation of the folding mechanism, and for the development of more sop-

histicated methods based on predicted contact maps and machine learning

approaches for predicting the folding rate and mechanism (Capriotti &

Casadio, 2007; Huang & Gromiha, 2010; Punta & Rost, 2005). In general,

all the methods represent the protein as a graph where the nodes are the

residues connected by an edge when the distance between two nodes is

below a given threshold. Such representation, which is equivalent to a con-

tact map, is used to compute the distribution of non-local interactions

among residues.

4. Protein structure representation

In the last two decades the Protein Structure Initiative strongly con-

tributed to the identification of new protein structures (Grabowski et al.,

2016). Such information is important for studying the function of a protein

that is related to geometrical features defining the secondary structure of the

protein and determining its fold (Hrmova & Fincher, 2009). Currently the

PDB collects �177K structures which are classified in more than 5000

superfamilies and families by the two most popular databases CATH

(Sillitoe et al., 2021) and SCOP (Andreeva et al., 2020). Each protein

three-dimensional structure is represented by the coordinates of its atoms.

For representing a protein composed by n atoms, 3n numbers are needed.

An alternative protein structure representation is based on the distance
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matrix which is composed by n2 elements that for the symmetry are reduced

to n(n�1)/2. Although the distance matrix has more elements than stan-

dard representations based on the atom coordinate, it can be advantageous

when only low resolution data from NMR are available (Bartoli et al.,

2008). A simplified version of the distance matrix is the contact map which

considers only the distance between specific atoms of each residue either

α or β carbons and a cut-off distance to represent the presence of absence

of a contact with a binary number. The possibility of reconstructing the

protein structure starting from a reduced representation is an essential

aspect for its application to the study of the protein structure. Previous

studies have proved that contact maps provide a good representation of

the protein backbone (Porto et al., 2004; Vassura et al., 2008). Thus, the

contact map, which retains the main information about protein structure,

can be used as a proxy for the characterization of the protein folding

mechanism.

5. Contact maps and graph Laplacian

Every protein can be represented as a network of interacting particles,

where nodes can correspond to single atoms, residues, or even larger motifs,

and links to their interactions. Of course, in this approach, a key point con-

sists of how nodes and links are defined. For sake of simplicity, we consider

α-Carbons (Cα) as nodes and distance-dependent interactions as links, by

imposing that two nodes are connected if their distance d is lower than a

specific threshold t. In this way, given the number N of Cα, we could asso-
ciate to each protein a contact mapA, that is a binaryNxN symmetric matrix

defined as:

Aij ¼
1 if dij � t

0 if dij > t

(

In network theory, A corresponds to the adjacency matrix of a graph, and

represents the starting point for studying the importance of nodes within

the network, and the topological structure of the interactions between

them.
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From A, the Laplacian operator of a network, is derived as:

L ¼ D� A

where D is the degree matrix, defined as Dij¼ki ∙δij, and ki represents the

degree of node i. In particular, the action of L on a N-dimensional lattice

corresponds to the discretization of a N-dimensional elastic membrane,

where L’s eigenvalues represent the frequencies of the normal modes and

L’s eigenvectors represent the normal mode solutions or eigenfunctions

(Biyikoglu et al., 2007). With this analogy in mind, the eigenvalue decom-

position of the Laplacian operator corresponds to searching for extremal

values of the Rayleigh functional, vectors x that maximize or minimize

the mutual distance between nodes in the network, expressed by the follow-

ing semi-positive quadratic form:

x
!T

Lx
! ¼

X
i�j

xi � x j

� �2
The trivial solution corresponds to the 0 eigenvalue, in which all

nodes have the same spatial coordinates and thus xi ¼xj for every i,j.

The non-trivial solutions seek for a minimal distance by imposing

the orthogonality with the constant vector. If we hypothesize that the

elastic potential schematized by the Laplacian operator is an approxima-

tion around the minimum of the Lennard-Jones potential-like function,

modeling the interaction between protein residues, the 3D coordinates

of Cα can be estimated by the components of the 3 eigenvectors associated

with the 3 smallest positive eigenvalues of the Laplacian operator, thus pro-

viding a reconstruction of the 3D protein structure up to a linear

transformation.

6. Protein folding state discrimination and Laplacian
spectrum

In (Menichetti et al., 2016) the properties of the Laplacian spectrum

are leveraged to predict protein folding kinetics as two-state, an “all-or-

none” type of transition, or as multi-state, in presence of one or more inter-

mediates. The training database for Fisher discriminant analysis consists

of 63 manually annotated proteins by Ivankov and Finkelstein (2004)
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(25 multi-state, 38 two-state), all proteins with structure available on PDB

(https://www.rcsb.org).

PCMs are derived by choosing an upper threshold of 8 Å. Interestingly,

among the 5 network observables defined in the paper, whose performances

in combination or alone are extremely predictive of folding classes, we find

3 Laplacian-based variables. However, the best accuracy and Matthews

correlation coefficient are not achieved by deriving the Laplacian from

the original PCM, but by focusing on a modified version that keeps only

long-range contacts, while preserving the network connectivity.

With the hypothesis that the most relevant information on folding

kinetics is determined by the long-range contacts of the native folded

state, a partial removal of the protein backbone, up to the breaking

point of the protein into fragments, enhances the role of long-range con-

nections with respect to the protein backbone, while keeping the PCM

still connected. The number of diagonals removed varies from protein

to protein.

Once the Laplacian spectrum of the modified PCM is computed for each

protein, the 3 largest eigenvalues are collected and rescaled by the number of

residues NC. The rescaling corrects for the dependence of the largest eigen-

values λN, λN�1, λN�2 on NC. According to the vibrational interpretation

of the Laplacian, the selected eigenvalues represent the highest vibrational

frequencies associated with the small-range structure of the protein, com-

pared to a more global assessment of the long-range vibrations and algebraic

connectivity of the protein structure, offered by the Fiedler number (second

smallest eigenvalue).

The percentage of correctly classified proteins, when using λN, λN�1,

λN�2 separately, is 76.6%�1.3, 76.7%�1.4, and 77.6%�1.1, representing

the average values of 10-fold cross-validation over 10,000 resamplings.

Similarly, the Matthews correlation coefficient follows as 0.57�0.02,

0.58�0.02, and 0.59�0.02.

Overall, we observe that two-state proteins tend to have larger values of

fast-vibrating frequencies, compared to multi-state proteins, and that the

vibrational modes (i.e., the corresponding eigenvectors) associated to high

frequencies are in general characterized by a strong localization along the

vector, corresponding to specific protein regions. If this feature is observed

also in our case, and if this can be associated to specific folding/unfolding

dynamics, is still an open issue.
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7. A case study: Methods for protein 3D-structure
reconstruction

In order to compare and to evaluate two different network-based

approaches that we choose to use, we observe that a faithful reconstruction

of 3D structure, given the “network” information provided by the contact

map only, can be considered a good validation that the network frame-

work adopted can characterize properties associated with protein folding.

Therefore, in this section we will show two different network-based

methods that allow the reconstruction of the 3D coordinates of Cα,
starting from their contact maps.

The first method is based on the first three eigenvectors of the Laplacian

operator, as explained in Section 5, that exploits the “vibrational” analogy

of the Laplacian operator, as describing a set of unit masses connected by

springs with equal stiffness, and which first eigenvectors correspond to the

largest-scale vibrational modes. The second method was proposed by Lesne

et al. (2014), who devised an algorithm called ShRec3D with the aim of

reconstructing the 3D structure of chromosomes starting from Hi-C data

(Lieberman-Aiden et al., 2009), which allows the mapping of neighboring

DNA fragments, generating an output formally equivalent to a protein contact

map, despite the physics underlying chromosome and protein 3D configura-

tion is different (Merlotti et al., 2020), since there are no direct chemical bonds

between DNA strands, but rather we can talk about a spatial proximity medi-

ated by other factors (like cohesin, histones and CTCF proteins). Moreover,

differently fromDNA 3D structure which is still largely unknown particularly

at a fine scale of the single nucleotides, for our protein dataset we have the

ground truth provided by the protein 3D configuration obtained through

X-ray crystallography to be compared with our reconstructions.

The ShRec3D algorithm can be divided into two steps: (1) the compu-

tation of Cα distances starting from the contact map and (2) the estimation of

Cα spatial coordinates starting from their mutual distances. The first step is

performed by measuring the distance between two Cα as the length of the

shortest path connecting them in the network provided by the contact map.

In fact, it is known that the shortest paths sij between nodes i and j in a sym-

metric network satisfy the conditions to be considered a metrics: (1) be¼0 if

i¼ j; (2) be symmetric sij ¼ sji; (3) satisfy triangular inequality. Thus, the idea

behind this approach is that given that the contact map is only an
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approximation to the real distance matrix between protein residues (identi-

fying only the shortest distances below a threshold), the best approximation

to the full distance matrix (that satisfies the conditions for which the theo-

rems of distance geometry hold) is guessed by the distance matrix computed

from the shortest paths of the contact map.

The second step is based on the results of distance geometry (Sippl &

Scheraga, 1985; Havel et al., 1983) and multidimensional scaling (Torgerson,

1952), which concern the reconstruction of the original spatial structure of a

3-dimensional object (in our case, the proteins) given the full distance

matrix between its elements. This requires the spectral decomposition of

the Gram matrix, defined according to the following formula:

Gij ¼ 1

2
d20i+ d20j �D2

ij

h i
where

d20i ¼
1

N

XN
j¼1

D2
ij �

1

N 2

XN
j¼1

XN
k>j

D2
jk

represents the distance between the barycenterO and the point Pi of the 3D

object. Cα spatial coordinates are then estimated through the 3 eigenvectors

El (l¼1, 2, 3) associated with the 3 largest eigenvalues λl (l¼1, 2, 3) of the

Gram matrix, as follows:

V li ¼ El ið Þ �
ffiffiffiffi
λl

p
with

XN
i¼1

E2
l ið Þ ¼ 1:

where El(i) is the i-th component of the eigenvector El. In this way, we can

obtain a 3D reconstruction of Cα spatial coordinates up to an arbitrary

rotation, dilation and possibly mirror symmetry (Lesne et al., 2014).

The two approaches start from different assumptions, but they rely on a

similar algebraic structure, since also the Laplacian operator can be seen as a

Gram matrix L¼ ITI, where I is a rectangular incidence matrix that has one

row for each link of the network, containing�1 and 1 values in each row in

correspondence to the connected nodes (the direction of the link can be

arbitrarily chosen, since this direction information is lost in the Laplacian

operator).

We reconstructed the 3D structure of 63 proteins from (Menichetti et al.,

2016) and characterized by different sizes (from 20 to 8015 Cα) and different
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folding kinetics. The results were evaluated by computing the Pearson’s

correlation between Cα-pairwise distances in the reconstructed and real

structure: the higher the correlation, the better the reconstruction.

We tested whether and how the following parameters could affect the

results: (1) the folding kinetics; (2) the number of Cα composing the pro-

teins. Moreover, the threshold value used to compute the contact map was

varied, considering in particular 8 and 12 Å, to see how the variation in the

resulting contact map could affect the reconstruction performance.

Looking at the histograms of correlation values represented in Fig. 1, we

can notice that the reconstruction through ShRec3D achieved higher per-

formances than the Laplacian-based one. In particular, the former is charac-

terized by similar performances independently on the threshold value used

to calculate the contact map, while the latter is characterized by an overall

worsening for contact maps calculated using 12 Å as threshold (see Table 1).

This result justifies the hypothesis that the shortest path distance matrix

provides a more reliable estimation of the original distance matrix than

the simple contact map, showing an increasing performance as the corre-

lation value between shortest path distances and true distances increases

(see Fig. 2). In fact, if we represent in a scatterplot the former as a function

of the latter for each pair of Cα composing a protein, we can see that

the structures that are well reconstructed by ShRec3D, show a linear

Fig. 1 Histograms of correlation values between real and reconstructed Cα-pairwise
distances via Laplacian and ShRec3D embedding, starting from contact maps obtained
using different threshold values: 8 and 12 Å.
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increasing trend characterized by a lower dispersion (see Fig. 3); whereas

the structures that are not well reconstructed are characterized by a higher

dispersion (see Fig. 4).

If we consider the 10 proteins with the highest and the lowest correla-

tion values between real and reconstructed distances obtained from an 8 Å

contact map, we can notice that Laplacian embedding provides the best

results on proteins that do not show a modular structure (see Table 2,

Figs. 5 and 6), which corresponds to a contact map characterized by blocks

Fig. 2 Scatter plot between correlation values obtained by comparing real and recons-
tructed distances with Shrec3D (S3D Dist) and correlation values obtained by comparing
real distances and shortest-path lengths (SP Dist), starting from an 8 Å contact map.

Table 1 Mean correlation values between real and
reconstructed Cα distances via Laplacian and ShRec3D
method, starting from different contact maps, obtained
using as threshold values 8 and 12 Å.

t58Å t512Å

Laplacian 0.77 0.73

ShRec3D 0.94 0.97
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Fig. 3 Scatter plot between real distances (RD) and shortest-path lengths (SP) for the 10 proteins listed in Table 3, on which the
ShRec3D-based method obtained the best results.



Fig. 4 Scatter plot between real distances (RD) and shortest-path lengths (SP) for the 10 proteins listed in Table 3, on which the
ShRec3D-based method obtained the worst results.



along the diagonal; on the contrary, ShRec3D embedding provides the

worst results on proteins characterized by the absence of a modular struc-

ture (see Table 3, Figs. 11 and 12). In particular, the 10 proteins with the

lowest correlation values between real and Laplacian-reconstructed dis-

tances and the 10 proteins with the highest correlation values between real

and ShRec3D-reconstructed distances, have four elements in common:

1SCE, 1CBI, 1FNF, and 1C9O, which are all characterized by a contact

map with blocks along the diagonal.

If we stratify the dataset according to protein two-state or multi-state

folding kinetics, we can see that ShRec3D reaches the best performance when

using 12Å as threshold, independently on the two-state or multi-state class

(see Table 4), whereas the Laplacian-based method reaches the best perfor-

mance on two-state and multi-state proteins at different threshold values,

which are respectively 8 and 12 Å (see Table 5).

Table 2 Left: 10 proteins with the highest correlation values between real distances and
reconstructed ones via Laplacian eigenvectors, starting from an 8Å contact map. All the
proteins are characterized by the absence of a modular structure (MS, shown in Fig. 5
and even more clearly in Fig. 6) and 8 out of 10 belong to the two-state class (FK). Right:
10 proteins with the lowest correlation values between real distances and reconstructed
ones via Laplacian eigenvectors, starting from an 8Å contact map. 8 out of 10 proteins
are characterized by a modular structure (MS, shown in Fig. 7 and even more clearly in
Fig. 8) and 6 out of 10 belong to the multi-state class (FK).
Protein ID MS FK Protein ID MS FK

2CRO No Multi-state 1SCE Yes Multi-state

1ARR No Two-state 1CBI Yes Multi-state

1BNZ No Two-state 1PBA No Two-state

1SRL No Two-state 1PHP Yes Multi-state

2PTL No Two-state 1FNF Yes Multi-state

1HRC No Two-state 1VII No Two-state

1BTA No Multi-state 1OPA Yes Multi-state

1POH No Two-state 1PIN Yes Two-state

1YCC No Two-state 2LZM Yes Multi-state

2ACY No Two-state 1C9O Yes Two-state
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Fig. 5 8Å contact maps of the 10 proteins listed in Table 2, with the highest correlation values between real distances and reconstructed ones
via Laplacian eigenvectors.



Fig. 6 12Å contact maps of the 10 proteins listed in Table 2, with the highest correlation values between real and reconstructed distances via
Laplacian eigenvectors.



Fig. 7 8Å contact maps of the 10 proteins listed in Table 2, with the lowest correlation values between real distances and reconstructed ones
via Laplacian eigenvectors.



Fig. 8 12Å contact maps of the 10 proteins listed in Table 2, with the lowest correlation values between real and reconstructed distances via
Laplacian eigenvectors.



Table 3 Left: 10 proteins with the highest correlation values between real distances and reconstructed ones via ShRec3D, starting from an 8Å
contact map. 6 out of 10 proteins are characterized by a modular structure (MS, shown in Fig. 9 and even more clearly in Fig. 10) and 7 out of
10 belong to the two-state class (FK). Right: 10 proteins with the lowest correlation values between real distances and reconstructed ones via
ShRec3D, starting from an 8Å contact map. 8 out of 10 proteins are characterized by the absence of a modular structure (MS, shown in Fig. 11
and even more clearly in Fig. 12) and 5 out of 10 belong to the multi-state class (FK).
Protein ID MS FK Protein ID MS FK

1FNF Yes Multi-state 1HNG Yes Multi-state

2PTL No Two-state 1BRS Yes Multi-state

1L8W Yes Two-state 1EAL No Multi-state

2A5E No Multi-state 1ENH No Two-state

1PCA No Two-state 2LZM No Multi-state

1URN Yes Two-state 1RA9 No Multi-state

1C9O Yes Two-state 1TEN No Two-state

1CBI Yes Multi-state 1RIS No Two-state

1AYE No Two-state 1L2Y No Two-state

1SCE Yes Multi-state 1UBQ No Two-state



Fig. 9 8Å contact maps of the 10 proteins listed in Table 3, with the highest correlation values between real distances and reconstructed ones
via ShRec3D.



Fig. 10 12Å contact maps of the 10 proteins listed in Table 3, with the highest correlation values between real and reconstructed distances via
ShRec3D.



Fig. 11 8Å contact maps of the 10 proteins listed in Table 3, with the lowest correlation values between real distances and reconstructed ones
via ShRec3D.



Fig. 12 12Å contact maps of the 10 proteins listed in Table 3, with the lowest correlation values between real and reconstructed distances via
ShRec3D.



Moreover, if we represent the correlation values between real and

reconstructed Cα distances as a function of the number of residues (see

Figs. 13–16), we can notice two different behaviors between the two-state/

multi-state classes, depending on the threshold used to calculate the contact

map and on the reconstruction method. In fact, if we start from contact maps

produced using 8 Å as threshold, we can see that the performance of both

methods is almost constant as the length of the number of residues increases,

for two-state proteins (see Fig. 15); whereas, in the case of multi-state

proteins, this is still true only for ShRec3D reconstruction, while the

Laplacian-based one shows a decreasing performance as the number of res-

idues increases (see Fig. 15). If we start from contact maps produced using

12Å as threshold, we can see that the scenario changes only for two-state

proteins, whose performance increases as the number of residues increases,

for both methods (see Fig. 16).

Table 4 Mean correlation values between real and reconstructed
Cα distances via ShRec3D method, for proteins divided into
two-state or multi-state and represented by different contact
maps, obtained using as threshold values 8 and 12 Å.

Two-state Multi-state

t¼8 Å 0.95 0.93

t¼12 Å 0.96 0.97

Table 5 Mean correlation values between real and reconstructed
Cα distances via Laplacian method, for proteins divided into
two-state or multi-state and represented by different contact
maps, obtained using as threshold values 8 and 12 Å.

Two-state Multi-state

t¼8 Å 0.79 0.75

t¼12 Å 0.71 0.78
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Fig. 13 Correlation value between true and reconstructed distances via Laplacian (left column) and ShRec3D (right column) embedding for
two-state (upper row) and multi-state (lower row) proteins represented through an 8Å contact map, as a function of the number of residues.



Fig. 14 Correlation value between true and reconstructed distances via Laplacian (left column) and ShRec3D (right column) embedding for
two-state (upper row) and multi-state (lower row) proteins represented through a 12Å contact map, as a function of the number of residues.



Fig. 15 Zoom of Fig. 10 on x-axis. Correlation value between true and reconstructed distances via Laplacian (left column) and ShRec3D (right
column) embedding for two-state (upper row) and multi-state (lower row) proteins represented through an 8Å contact map, as a function of
the number of residues.



Fig. 16 Zoom of Fig. 11 on x-axis. Correlation value between true and reconstructed distances via Laplacian (left column) and ShRec3D (right
column) embedding for two-state (upper row) and multi-state (lower row) proteins represented through a 12Å contact map, as a function of
the number of residues.



8. Discussion

Network-based methods can provide useful tools to characterize

properties associated to protein folding, in particular regarding the 3D struc-

ture reconstruction. This scope can be interpreted as the identification of an

optimal embedding manifold for the network through spectral approaches,

related to the recently developing topic of network geometry (Boguñá et al.,

2021), that deals with networks characterized by an intrinsic geometric

space, in our case the 3D Euclidean space in which the 1D residue chain

folds. At difference with less “physical” networks (like social networks,

the world wide web, or protein interaction networks, in which there are

no physical constraints on the links related to a maximum distance allowed

between nodes) the properties of the chain structure of the protein, and

the fact that it folds in a physical space, appear to be reflected in the prop-

erties of the contact map. In particular, the guess of using the shortest path

distance as a proxy for the real residue distance, as proposed within the

ShRec3D approach, seems satisfying in many cases, achieving better results

than the Laplacian-based approach. As shown in a previous paper nonetheless

(Menichetti et al., 2016), observables associated to the Laplacian operator

allowed to discriminate between two-state and multi-state proteins, thus for

other applications the informative content provided by this network formalism

can be relevant as well. Even if the two proposed approaches rely on a common

theoretical ground (i.e., the algebra of Gram matrices) the performances of the

two methods are independent from each other (see Fig. 17) and seem to be

much more influenced by the threshold value chosen for the computation

of the contact map rather than the folding kinetics class (two-state/multi-state)

or the number of residues. The database we used allowed us to evaluate and

compare the two methods for the specific task of protein fold structure recon-

struction, but in general the resulting spectral embeddings can be used on larger

protein datasets as a pre-processing for unsupervised (i.e., clustering) or super-

vised (classification or mapping of specific protein chemical/physical proper-

ties) studies, and providing an optimal metrics for novel approaches like

semi-supervised methods (van Engelen & Hoos, 2020).
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Fig. 17 Correlation value between true distances and reconstructed distances via ShR3c3D method as a function of correlation value
between true distances and reconstructed distances via Laplacian-based method, obtained starting from an 8Å contact map (left) and a
12Å contact map (right).
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