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Abstract
Motivation: Rare diseases collectively affect 5% of the population. However, fewer than 50% of rare disease 
patients receive a molecular diagnosis after whole genome sequencing. Supervised machine Learning is a 
valuable approach for the pathogenicity scoring of human genetic variants. However, existing methods are often 
trained on curated but limited central repositories, resulting in poor accuracy when tested on external cohorts. 
Yet, large collections of variants generated at hospitals and research institutions remain inaccessible to machine-
learning purposes because of privacy and legal constraints. Federated learning (FL) algorithms have been recently 
developed enabling institutions to collaboratively train models without sharing their local datasets.
Results: Here, we present a proof-of-concept study evaluating the effectiveness of federated learn-ing for the 
clinical classification of genetic variants. A comprehensive array of diverse FL strategies was assessed for coding 
and non-coding Single Nucleotide Variants as well as Copy Number Variants. Our results showed that federated 
models generally achieved com-parable or superior performance to traditional centralized learning. In addition, 
federated models reached a robust generalization to independent sets with smaller data fractions as compared to 
their centralized model counterparts. Our findings support the adoption of FL to establish secure multi-
institutional collaborations in human variant interpretation.
Availability: All source code required to reproduce the results presented in this manuscript, implemented in 
Python, is available under the GNU General Public License v3 at https://github.com/RausellLab/FedLearnVar.
Contact: antonio.rausell@institutimagine.org
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 
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Rare diseases include a diverse range of more than 6172 clinical 
conditions that collectively affecting 4-5% of the population (Nguengang 
Wakap et al., 2020). Approximately 70% of rare diseases are considered 
to be of genetic origin (Licata et al., 2023). These are caused by high-
impact germinal DNA defects including single-nucleotide variants (SNV) 
or large duplicated or deleted chromosomal regions referred to as Copy 
Number Variants (CNVs). Whole genome sequencing (WGS) has become 
a first-line genetic test for the diagnosis of rare diseases in the health 
system as it provides a comprehensive view of genomic alterations 
(Austin-Tse et al., 2022). Yet, the assessment of the approximately 5 
million genetic variants typically found in a single individual genome is 
still challenging, and only an average of 40% of patients receive a 
molecular diagnosis (Stranneheim et al., 2021; Turro et al., 2020). 

Supervised machine learning (ML) has become a prominent 
bioinformatics strategy for the pathogenicity annotation of genetic 
variants, thanks to its ability to uncover complex patterns among genomic 
features (Eilbeck et al., 2017; Zhu et al., 2020). Here, models are trained 
on collections of genetic variants previously annotated as pathogenic or 
benign. Most state-of-the-art supervised ML scores for pathogenic 
variants prediction have been trained on curated genotype-phenotype 
databases, which encompass diverse sets of variant types, genes, diseases 
and phenotypic annotations (Brookes and Robinson, 2015). However, 
such reference databases contain only a fraction of all pathogenic variants 
identified to date across clinical and research institutions, due to 
sensitivity and privacy concerns. In the context of rare Mendelian 
diseases, even a single, ultra-rare genetic variant associated with a 
distinctive phenotype can, by itself, constitute identifiable information. 
Therefore, submission to public repositories typically requires explicit 
patient consent, approval from institutional ethics committees, and 
compliance with diverse national regulations, among other steps. As a 
consequence, currently available repositories of clinically annotated 
genetic variants remain limited in both size and heterogeneity, often 
resulting in supervised ML scores that generalize poorly to newly 
encountered patients or disease cohorts. (Bromberg et al., 2024). Such 
limitations are even more pronounced in the case of genetic variants 
affecting non-coding genomic regions, i.e. those outside protein-coding 
sequences, whose functional and clinical impacts are still largely 
uncharacterized (Caron et al., 2019; Ellingford et al., 2022).

Multi-institutional collaboration can increase genetic and clinical data 
size and diversity, and therefore, improve the generalization of ML models 
for variant assessment. However, regulatory policies, such as General 
Data Protection Regulation (GDPR) for European Union (Hoofnagle et 
al., 2019) and Health Insurance Portability and Accountability Act 
(HIPAA) in the United States of America (Annas, 2003), preclude 
genomic and clinical data sharing, as it represents threats to patient 
privacy. In genetic research, for example, data leaks can have harmful 
consequences for patients, such as genetic discrimination or data misuse 
(Bonomi et al., 2020; Wan et al., 2022).

Federated Learning (FL) has emerged as a promising solution for data-
private collaboration in medicine and health (Sheller et al., 2020; Sadilek 
et al., 2021; Adnan et al., 2022). In contrast to collaborative data sharing 
(CDS), where institutions need to centralize their local datasets for model 
training, FL proposes keeping the data decentralized and learning a 
consensus model, by aggregating locally-computed updates. In the 
traditional implementation, the clients (e.g., hospitals or health-research 
institutions) are coordinated by a central server, which defines and 
maintains a global ML model. At each round of FL, the server sends a 
copy of the model parameters to the clients for local training, and 
aggregates the local updates to derive a new global model, which is used 
in the subsequent round (Figure 1). This process is repeated until a 

maximum number of rounds is achieved or a different stopping condition 
is met.

Fig. 1.  General overview of Federated Learning training. A central server orchestrates 
the collaborative training of a global machine learning model across the clients. Instead of 
raw data, only model parameters are exchanged between the server and clients.

In recent years, FL has proven effective for secure genomic data 
sharing. Nasirigerdeh et al. (Nasirigerdeh et al., 2022) presented sPLINK, 
a tool for the federated learning implementation of collaborative genome-
wise association studies (GWAS). Experiments showed that sPLINK was 
robust against different sources of data heterogeneity, including the 
distribution of phenotypes and confounding factors. Raimondi et al. 
(Raimondi et al., 2023) proposed a FL solution for multi-site exome-based 
risk prediction of Crohn’s disease patients. The authors leveraged three 
public databases containing case and control Whole Exome Sequencing 
data to simulate a FL setting involving variable numbers of data owners. 
The results showed that the FL model improved the accuracy of models 
trained locally, even when the FL model was trained across 10 data owners 
who held very small datasets. More recently, Kolobkov et al. (Kolobkov 
et al., 2024) proposed a simulated FL study for phenotype-from-genotype 
prediction and ancestry-from-genotype prediction on UK Biobank and the 
1000 Genome Project. The authors showed that FL models were almost as 
accurate as the CDS model, and outperformed considerably the local 
models. To the best of our knowledge, however, studies evaluating the 
efficacy of FL for the pathogenicity annotation of genetic variants are 
currently lacking. 

In this paper, we propose a proof-of-concept FL study for the 
pathogenicity annotation of genetic variants across independent 
institutions without raw data exposure. By leveraging the submitter 
information associated with each genetic variant in the publicly available 
ClinVar database (Landrum et al., 2014), we mimicked three realistic 
multi-institutional collaborations for the clinical assessment of human 
genetic variants corresponding to three major types: coding SNVs, non-
coding SNVs, and deletion CNVs. We then evaluated a comprehensive 
array of diverse FL strategies incorporating alternative network-based 
models, FL aggregation algorithms, local optimizers, client participation 
rates, FL server and client learning rates, collectively accounting for 1344 
different settings (Supplementary Table 1). For each variant type, we 
systematically compared the performance of FL against that of CDS and 
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single-institutional models. Model performance was assessed through 
cross-validation on the training set as well as on two additional 
independent test sets, allowing us to evaluate the generalization 
capabilities of the classifiers across the three case studies. Further 
experiments evaluated model robustness to client dropouts as well as 
model behavior under identically or non-identically distributed features. 
Our study showed that overall, the performance of federated models is 
generally superior to local models, and can reach comparable or superior 
results to CDS.

2 Methods
Genetic variants data collection.
Coding and non-coding SNVs were extracted from ClinVar (version 
December 2020) as described in Capriotti and Fariselli 2023 (Capriotti and 
Fariselli, 2023). To adapt the dataset to a federated learning setting, we 
performed the following modifications (Supplementary Figure 1): We 
first split variants into two non-overlapping subsets: 1) SNVs reported 
before January 1st 2020 (referred to as SNVs-Before-2020-01), and 2) 
SNVs reported after January 1st (referred to as SNVs-After-2020-01). For 
coding SNVs, the multi-institutional training set was composed of SNVs 
from institutions having at least 1K coding SNVs in SNVs-2020-01, which 
resulted in 6 independent silos, with sizes ranging from 30,815 to 1,417 
variants (Supplementary Table 2). Each institution subset was randomly 
downsampled in order to obtain a 1:1 balanced set of pathogenic and 
benign variants. In addition, we obtained 2 balanced independent test sets: 
a first set consisting on the remaining coding SNVs from SNVs-2020-01 
(10,378 variants) and a second set containing the coding SNVs from 
SNVs-After-2020-01 (2,838 variants) respectively. In the case of non-
coding SNVs, we obtained a multi-institutional training set formed by 8 
institutions having at least 100 non-coding SNVs in SNVs-Before-2020-
01, with sizes ranging from 2,288 to 101 (Supplementary Table 3). 
Similarly to coding SNVs, random downsampling was performed to 
obtain a 1:1 balanced set of pathogenic and benign variants and two 
independent test sets obtained containing 5,534 and 472 non-coding SNVs 
respectively.

In the case of CNVs, a high-confidence non-redundant set of 
pathogenic and benign deletion CNVs was obtained as described in 
Requena et al. (Requena et al., 2022). Pathogenic and likely pathogenic 
deletion CNVs were obtained from ClinVar (version October 2021). 
Benign CNVs were obtained from reference databases and matched by 
genomic length with the pathogenic CNVs in ratio 1:1 [3]. Similarly to 
coding and non-coding SNVs, we split the dataset into two non-
overlapping subsets: 1) deletion CNVs reported before January 1st 2021 
(referred to as CNVs-Before-2021-01), and 2) deletion CNVs reported 
after January 1st (CNVs-After-2021-01). For the purpose of this study, we 
considered benign deletion CNVs that had the same submission date as 
the corresponding pathogenic variant to which they were matched (see 
above). We derived a multi-institutional dataset by taking the deletion 
CNVs belonging to those institutions having at least 80 CNVs in CNVs-
Before-2021-01, resulting in 8 independent silos, each with a 1:1 balanced 
set of pathogenic and benign variants, with sizes ranging from 6,936 to 82 
variants (Supplementary Table 4). We used the remaining deletion 
CNVs from CNVs-Before-2021-01 to form the first independent test set, 
accounting for a total of 682 samples. A second independent test set was 
formed with the 96 samples from CNVs-After-2021-01. The largest silo in 
the obtained multi-institutional dataset held around 90% of the total data, 
while each of the remaining silos individually accounted for 
approximately 1-2%. In order to avoid bias during training, we decided to 

train centralized and federated models across the smaller clients and 
compare their performance with the model trained on the largest client.

Variant features annotation.
Both coding and non-coding SNVs were annotated with a total of 60 
features following (Capriotti and Fariselli, 2023), including: i) 25 values 
representing the 5-nucleotide window sequence centered on the mutated 
position (5 times 5 possible nucleotides: A, C, G, T, N), ii) 10 values 
representing the conservation scores of 100-species (PhyloP100) and 470-
species alignments (PhyloP470) of the five-nucleotide window sequence 
centered on the mutated position (Pollard et al., 2010). In this study, we 
also annotated SNVs by using an additional 25 values mapping the 
conservation scores of 3-species (PhyloP3), 4-species (PhyloP4), 7-
species (PhyloP7), 17-species (PhyloP17), and 20-species (PhyloP20) to 
the five nucleotide window positions.

CNVs were annotated with 38 features, grouped into gene-based and 
region-based features, as described in (Requena et al., 2022). CNV gene-
based features involved genes for which at least one base pair overlapped 
with the CNV genomic coordinates, based on Ensembl Gene (version 
103), and using the GRCh37.p13 human reference genome. Genes were 
annotated using the following features: i) the probability of loss-of-
function intolerance of the gene (pLI version 2.1.1, (Karczewski et al., 
2020)); ii) the loss-of-function observed/expected upper bound fraction 
(LOEUF score, version 2.1, (Karczewski et al., 2020)); iii) the probability 
of being tolerant to both heterozygous and homozygous loss-of-function 
variants (pNull, version 2.1.1, (Karczewski et al., 2020)); iv) the 
constrained coding region (CCR) score (Havrilla et al., 2019); v) the 
enhancer domain (EDS) score (Wang and Goldstein, 2020); vi) 
predictions of haploinsufficiency or triplosensitivity, based on a meta-
analysis of rare CNVs from 753,994 individuals (Collins et al., 2022); vii) 
ohnolog genes, as reported in the OHNOLOGS database (version 2, 
(Singh and Isambert, 2020)), considering only pairs labeled as strict 
(highly reliable); viii) genes encoding transcription factors, according to 
data from the FANTOM consortium; ix) fitness cost due to gene 
inactivation, based on a genome-wide CRISPR-based score (CRISPR 
score, (Wang et al., 2014)); x) involvement of the proteins encoded by the 
genes in a protein complex (as extracted from hu.MAP 2.0 (Drew et al., 
2021), with only proteins labeled with extremely high confidence 
selected); xi) mean and minimum gene expression across 54 tissues, 
obtained from the median transcripts per million (TPM) expression levels 
for each gene, provided by the Genotype-Tissue Expression Project 
(GTEx, version 8, (GTEx Consortium, 2013)), in which all GTEx tissues 
were considered; xii) mean PhastCons 46-way placental score (Siepel et 
al., 2005), xiii) the CpG density of the promoter regions identified as 2 kb 
upstream and downstream from the transcription start site (TSS), defined 
as the first nucleotide of the transcript, according to previous work 
(Boukas et al., 2020); and xiv) six network-based gene/protein features 
extracted from a protein-protein interaction network: degree, PageRank, 
and shortest path to proteins associated with haploinsufficient and 
triplosensitive genes respectively (Requena et al., 2022). Gene-based 
features were transformed into categorical variables (“0” or “1” coding for 
the absence or presence, respectively, of at least one gene with the 
corresponding categorical feature), or quantitative variables encoding the 
maximum or minimum of the corresponding feature across the genes 
mapping within the CNV, except for minimum expression, the shortest 
path to haploinsufficient genes, and the shortest path to triplosensitive 
genes, for which the minimum was applied.

CNV region-based features considered included: i) the percentage of 
the CNV covered by each of the following six types of regulatory regions: 
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open chromatin regions, transcription factor binding sites (TFBS), 
promoters, promoter flanking regions, CTCF sites, and enhancers, 
identified on the H1 human embryonic stem cell line (H1-hESC) and 
obtained from the Ensembl Regulatory Build (version 2019-11-01, 
(Zerbino et al., 2015)); ii) the maximum recombination rate (Halldorsson 
et al., 2019), CADD score (version 1.6, (Kircher et al., 2014)) and GERP 
scores (Davydov et al., 2010) across the CNV genomic interval, with the 
scores previously summarized by their maximum value within non-
overlapping 100 base pairs (bp) sliding windows; iii) Maximum gene 
density across the 1 megabase (Mb) sliding windows overlapping the 
CNV genomic interval; iv) four features encoding the presence or absence 
of CNV overlap (i.e. at least a 1 bp overlap) with the following regions of 
biological interest: a) human accelerated regions (HARs) (Capra et al., 
2013), b) lamina-associated domains (LADs) (Guelen et al., 2008), c) 
ultra-conserved non-coding elements (UCNEs) (Dimitrieva and Bucher, 
2013)), and d) structural variant (SV) hotspot regions (Ebert et al., 2021); 
and v) two features encoding the distance (in Mb) to the centromere and 
the closest telomere regions respectively; genomic coordinates were 
retrieved from the UCSC Genome Browser “Gap” track (Haeussler et al., 
2019).

Federated learning settings
In this study we focused on a cross-silo and horizontal FL setting. Cross-
silo refers to a small number of participants, typically organizations, such 
as genetic testing companies and research institutions in our context. The 
organizations are always available for local training and can participate in 
each round of FL training. The term horizontal indicates that clients’ 
datasets share the same feature space, but hold different data samples. As 
illustrated in Figure 1, one round of FL encompasses the following steps: 
1) The central server initializes a global ML model. In the experiment the 
models were initialized with random weights. 2) The central server then 
selects a subset of clients and broadcasts them a copy of the global model. 
Since we train neural network-based models, communicating the model 
refers to exchanging model weights. 3) The clients then use the local 
dataset for optimizing the received model through Stochastic Gradient 
Descent (SGD) for a predefined number of epochs. In the experiments, the 
number of local epochs was fixed to 10. 4) After completing the local 
training, the clients send the local updates (local models) to the central 
server. 5) The central server uses a FL aggregation method to combine the 
local updates into a new global model. Steps 2–5 are repeated for a 
predefined number of rounds, which was set to 200 in our experiments, or 
until a stopping condition is met. 

Throughout the FL process, clients and central server kept the same 
neural network to ensure consistency in the learning process and allow for 
seamless aggregation of local updates from multiple clients. Different 
aggregation algorithms can be used by the server to integrate the local 
updates into a unified ML model. In this study we benchmarked the 
following FL aggregation algorithms: (i) FedProx (Li et al., 2018) is a re-
parametrization of Federated Averaging (FedAvg) (McMahan et al., 
2017), specifically designed to address statistical heterogeneity among 
clients. In FedAvg, the central server randomly selects a subset of clients 
for local optimization and aggregates their local models using a weighted 
averaging approach, where the weights are taken proportional to the 
clients’ training dataset sizes. FedProx extends FedAvg by introducing a 
regularization term to the local training loss, denoted as µ, which 
constrains the local updates to be close to the global model. Notably, 
FedAvg is a special case of FedProx, when μ = 0 and Stochastic Gradient 
Descent (SGD) is the local optimizer. (ii) FedAdagrad (Reddi et al., 2020) 
is a federated version of the adaptive optimizer Adagrad (Lydia, A. A. and 
Francis, F. S.). The central server adjusts the learning rate for each model 

parameter based on the historical gradient information, therefore 
improving model convergence on non-IID data. (iii) FedAdam (Reddi et 
al., 2020) is an adaptation of the adaptive optimizer Adam (Kingma and 
Ba, 2014) to the FL setting. The central server adjusts the learning rate for 
each model parameter by using the first moment (the mean) and the second 
moment (the uncentered variance) of the gradients. (iv) FedYogi (Reddi 
et al., 2020) is a federated version of the adaptive optimizer Yogi (Zaheer 
et al., 2018), which proposes modifications to the update rule of the second 
moment in Adam to improve model stability in non-convex optimization 
scenarios. In the literature, FedAdagrad, FedAdam, and FedYogi are 
considered FedOpt variants.

Neural network-based models.
Two neural network-based models were evaluated in this study: (i) a 
prototypical and well known Multilayer Perceptron architecture (MLP) 
(Popescu et al., 2009), and (ii) a Shallow Neural Decision Forest (sNDF) 
(Kontschieder et al., 2015), for which provide here a short background for 
non-familiar readers. sNDF is a supervised ML model that combines 
elements of neural networks and decision trees. The main goal of sNDF is 
unifying the representation learning capabilities of deep neural networks 
with the divide-and-conquer mechanism of decision trees. To that end, 
sNDF implements first a deep convolutional neural network (CNN) for 
feature learning from raw input data, and then uses the learned 
representation for training a forest of stochastic and differentiable decision 
trees. Similar to Random Forest (Breiman, 2001), each decision tree is 
trained using a subset of features. The final prediction of the forest is taken 
as the average of individual decision tree predictions. In this approach, the 
model takes the original feature vectors as input and feeds them into a 
forest of stochastic and differentiable decision trees, allowing for end-to-
end training. More specifically, the original feature vectors are followed 
by a block of fully connected layers, with output units fn (Kontschieder et 
al., 2015). Each fn is associated with a decision (split) node in a tree, with 
decision function dn(x) = σ(fn(x)), where σ(x) = (1 + e−x)−1 is the sigmoid 
function. The output of dn is interpreted as the probability of routing the 
sample to the left or right subtree. Once the sample reaches a leaf node l, 
the prediction of the tree is given by the class-distribution πl. Further 
details on the training of the model can be found in (Kontschieder et al., 
2015).

Hyperparameter tuning and model training and evaluation.
To prevent, by design, downstream contamination of training and testing 
variants, we split training variant datasets by chromosome as proposed in 
(Capriotti and Fariselli, 2023; Requena et al., 2022; Sharo et al., 2022). 
More precisely, for each variant type and model configuration we trained 
a bundle of 23 classifiers, so that variants in a given chromosome were 
predicted using the classifier trained on variants from the remaining 
chromosomes. For example, we predicted CNVs in chromosome 2 by 
using a model trained on CNVs in chromosomes 1, 3, 4, etc. We refer to 
this approach as leave-one-chromosome-out training. We followed the 
guidelines in (Ogier du Terrail et al., 2022) for hyper-parameter tuning by 
grid-search. We first tuned the hyperparameters of centralized ML models 
for further comparison with the federated version. For centralized MLP 
and sNDF we tuned the hyperparameters related to model architecture, 
batch size, learning rate, and optimizer. Specifically, we trained a 3-layer 
MLP and considered the following hyperparameters for this model: 1) 
number of neurons in the hidden layer ∈ {3, 4, 5, 6, 7, 8, 9}, 2) batch size 
∈ {4, 8, 16, 32}, 3) learning rate ∈ {0.1, 0.01, 0.001, 0.0001}, 4) optimizer: 
SGD (with a momentum of 0.9) and Adam (with β1 = 0.9 and β2 = 0.999). 
We fixed weight decay to 0.0001. For sNDF we considered the same 
hyper-parameter sets for batch size, learning rate, optimizer and weight 
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decay. We also explored the following hyperparameters related to model 
architecture: 1) number of trees ∈ {3, 5, 10, 15}, depth of the trees ∈ {3, 
6, 9}, feature rate ∈ {0.5, 0.6, 0.7, 0.8, 0.9} (referring to the rate of original 
features used for training each individual tree in the forest). We used the 
best hyperparameters found per model (based on area under ROC curve) 
for training single-site models as well. The architecture, batch size, and 
weight decay of the best centralized models was reused for training the 
federated versions, as well as for the centralized non-differentiable models 
(random forest and XGboost, for which equivalent sNDF hyperparameters 
were applied). 

We optimized the FL-related hyperparameters that, for practicality, we 
divided into general, and FL aggregation method-specific. Among general 
hyperparameters we considered: 1) local learning rate ∈ {0.1, 0.01, 0.001, 
0.0001}, 2) local optimizer: SGD (with momentum 0.9) and Adam (with 
β1 = 0.9 and β2 = 0.999), and 3) client rate ∈ {0.5, 1.} (referring to the 
number of clients selected randomly for local training). For FedProx we 
also consider proximal term μ ∈ {0.5, 0.1, 0.01, 0.001, 0.0001, 0}. For 
FedAdam, FedAdagrad, and FedYogi we also considered: 1) server 
learning rate ∈ {1, 0.1, 0.01, 0.001}, 2) τ ∈ {0.0001, 0.01, 0.1}, 
representing the adaptivity parameter. For FedAdam and FedYogi we 
fixed β1 = 0.9 and β2 = 0.999. In the case of the training of federated MLP 
we also considered the inclusion (or exclusion) of local batch 
normalization layers. Supplementary Table 5 outlines the parameters 
retained for CDS and FL models for the pathogenicity annotation of 
coding SNVs, non-coding SNVs, and CNVs. Hyperparameters of CDS 
and FL models were tuned with 10-fold collaborative cross-validation 
(CCV) on the entire training data. As outlined in (Linardos et al., 2022), 
CCV proposes coordinating cross-validation across participants in the 
federation, so that each institution splits its local dataset into training and 
validation sets. Therefore, the final validation set is the aggregation of 
each institutional validation set. To ensure fairness in the experiments, we 
used the same splits for comparing CDS and FL approaches. We 
performed CCV with 3 different seeds for model weight initialization. All 
models were trained to 200 epochs, with early stopping if the best model 
did not improve for 20 consecutive epochs. After finding the best 
parameters, we trained centralized (CDS), single-institutional (local), and 
FL models on the entire training set, and evaluated them in the two held-
out independent test sets. In this case, we repeated the experiments with 
30 different seeds for model weight initialization to obtain a more accurate 
estimation of model performance.

Generation of identically-distributed settings for evaluation in 
federated learning models.
The study of the potential impact of identical or non-identical feature 
distributions in the FL process was carried out here following a strategy 
described in (Ogier du Terrail et al., 2022), where identically distributed 
(IID) partitions were generated from the original training set. In order to 
do so, we took the complete training set and randomly distributed the 
variants across clients while respecting their original sample size. Then 
we trained the FL models on such new data partitions for 30 seeds for 
model initialization. We repeated the random data partition 100 times to 
obtain a histogram with the distribution of median AUC ROC values 
obtained for each training set.

Implementation
We implemented all the experiments using Flower (Beutel et al., 2020), a 
Python library that enables the federation of several ML frameworks, 
including PyTorch. The experiments were performed on a high-

performance computing (HPC) cluster, consisting of 18 computed nodes, 
each equipped with between 16 and 24 CPUs.

3 Results

3.1 Realistic scenarios of collaborative training for genetic 
variant assessment across independent institutions

In this work we evaluated the performance in the classification of 
human genetic variants as pathogenic or non-pathogenic of a diverse set 
of supervised learning approaches trained in a Federated Learning (FL) 
manner across multiple institutions, and compared it to the collaborative 
data sharing (CDS) and individual-institution model counterparts 
(Methods). To that aim, we took advantage of the publicly-available 
ClinVar database, which reports the pathogenic classification of genetic 
variants primarily submitted by genetic testing laboratories and research 
institutions. ClinVar database allows the association of each variant to its 
submitter institution, which is leveraged in this study for mimicking a 
realistic multi-institutional collaboration with or without data sharing. 
Three major types of genetic variants were independently evaluated: 
coding SNVs, non-coding SNVs and CNVs. For each variant type, we 
defined a multi-institutional dataset for training FL and CDS models, as 
well as two independent test sets for assessing the performance of the 
classifiers (Methods and Supplementary Table 1). Figure 2 shows the 
distribution of the training data across the institutions considered for each 
case study. Exact size of silos in the multi-institutional training set and in 
two independent test sets for each case studies are provided in 
Supplementary Tables 2 - 4.

The uneven distribution of variants observed across the participant 
institutions naturally provided different FL scenarios. In the case of coding 
and non-coding SNVs, the fraction of contributed instances showed a 
large heterogeneity across institutions, with contributors ranging from a 
maximum of 64.8% and 45.5% to a minimum of 3% and 2%, respectively 
(Figure 2). In contrast, CNVs presented a high concentration of variants 
in a single institution (90%) as compared to a panel of 7 small contributors 
whose contribution ranged between 1.2% and 2.2%. Thus, the first two 
cases were well adapted for a comparative analysis between the CDS and 
FL models involving all institutions. However, the third case appeared 
better suited for an evaluation comparing the performances of the models 
trained on the largest contributor against those resulting from the 
collaboration among the smaller ones, either in a CDS or a FL manner.

3.2 Performance assessment of alternative federated 
learning model architectures

For each of the case studies described above we implemented two neural 
network-based models: a simple Multilayer Perceptron (MLP) as the first 
model (Popescu et al., 2009) using ReLU activation functions, and a 
machine learning model combining neural networks and decision trees, 
named Shallow Neural Decision Forest (sNDF) (Kontschieder et al., 
2015) (Methods). For either the MLP or the sNDF models, we explored 
alternative FL strategies depending on the type of aggregation algorithm 
and the client rate used. The aggregation algorithm, defined as the 
mechanism used by the central server to combine the local updates into a 
unified ML model (Figure 1), plays a key role in FL, as it directly impacts 
model accuracy and convergence. Consequently, we benchmarked four 
FL aggregation algorithms, namely FedProx, FedAdagrad, FedAdam and 
FedYogi (Li et al., 2018; Reddi et al., 2020). Further details about the 
specificities of each method are provided in Methods. Second, we 
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explored different values for FL client rate – the percentage of clients 
considered in a given round for local training by randomly selecting the 
clients. In addition, we evaluated the impact of the inclusion or exclusion 
of local batch normalization layers during the training of federated MLP, 

since several studies have proposed its use for improving FL model 
performance under non-independent and non-identically distributed (non-
IID) data conditions (Li et al., 2021; Andreux et al., 2020).

Fig. 2.  Distribution of the training data across institutions considered in the experimentation. Distributions are shown for a) coding Single Nucleotide Variants (cSNVs), b) non-

coding Single Nucleotide Variants (ncSNVs), and c) deletion Copy Number Variants (CNVs). Detailed information about the institutions included in the multi-institutional coding SNVs, 

non-coding SNVs and CNV dataset derived from the ClinVar database is provided in Supplementary Table 2-4, respectively. Tables list the names and locations of the contributing 

institutions, along with the original dataset size and the number of pathogenic and benign samples associated with each institution.

 

We assessed model performance through cross-validation on the 
training set as well as on two additional independent test sets, allowing us 
to evaluate the generalization capabilities of the classifiers (Methods). 
The two independent test sets were designed to consider two 
complementary aspects: 1) variants belonging to cohorts from sites not 
having participated in the FL process, and 2) variants reported later than 
those variants used for FL training (Supplementary Table 6). The 
different FL settings evaluated are summarized in Supplementary Table 
1. Additional details on the collection of datasets, feature annotations, ML 
models used for training, and FL aggregation strategies are provided in 
Methods.

Supplementary Figure 2 displays the area under the receiver 
operating characteristic (AUC ROC) curve obtained through cross-
validation on the training set for the three types of genetic variants 
considered and across the different settings evaluated. Supplementary 
Table 5 outlines the best hyperparameters retained for each evaluation 
setting. The results showed that FedProx generally outperformed the 
alternative FL aggregation strategies evaluated. In addition, we observed 
that a FL client rate of 50% generally led to improved performance across 
all FL aggregation algorithms. Finally, for the MLP models, the inclusion 
of a batch normalization layer was generally detrimental. Overall, the two 
alternative learning strategies, MLP and sNDF, were similarly competitive 
when using the optimal FL settings, i.e., FedProx optimization, a 50% 

client rate, and no batch normalization layer. Results observed in the two 
independent tests confirmed these general trends (Supplementary Table 
6).

3.3 Comparative performance evaluation among local-
client, centralized, and federated models on two 
independent test sets.

The assessment of the federated learning models through cross-validation 
on the training set allowed us to identify the optimal FL parameters for 
each type of genetic variant and learning method considered (MLP and 
sNDF), in terms of aggregation strategy, client rate, and batch 
normalization in the case of MLP (Methods and Supplementary Table 
5). We then compared the performance of such optimal FL models against 
models obtained either from individual-client models or from centralized 
model counterparts, i.e., trained on aggregated client data. The AUC ROC 
values obtained on the two independent test sets for the three types of 
genetic variants considered are represented for the MLP and sNDF 
models, respectively, in Figures 3 and Supplementary Figure 3, with 
complete details reported in Supplementary Tables 7–9.

In the case of coding and non-coding SNVs, the results showed that the 
federated learning models were consistently either comparable or superior 
to the centralized model counterparts. FL models were particularly 
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remarkable in the case of MLP (Figure 3), where they significantly 
outperformed the centralized models in the two independent sets evaluated 
both for coding and non-coding SNVs (Wilcoxon rank sum test p-value 
<1.5e-05, Supplementary Table 10). Individual client models however 

showed a large heterogeneity, illustrating the risks of non-collaborative 
settings. Thus, while some reached competitive performance, others led to 
significantly inferior results (Supplementary Tables 7–8).

Fig. 3.  Performance of local, centralized, and federated MLP models on two independent test sets. Top and bottom panels show, respectively, the results on the first and second 

independent sets (Methods). In the case of coding SNVs and non-coding SNVs, the performance of the worst and best individual client models as well as the pooled-clients models are 

displayed. The performances of the remaining client models are reported in Supplementary Tables 7–9. In the case of CNVs, the performance of the largest client was compared against 

the centralized and federated learning models of the smaller clients. Boxplots in the panels represent the distribution of AUC ROC values obtained upon 30 different random seeds for model 

weight initialization. To ease comparison across models, a dotted red line represents the median value obtained for the centralized models.

 

As previously introduced, in the case of CNVs the performance of the 
largest client model was compared against the centralized and FL models 
across the smaller clients. Here, the largest-client ranked first across all 
scenarios evaluated, as expected from the sharp difference in the training 
set size (Figure 2). However, despite this limitation, the cooperation 
across small clients through FL led to competitive results which, in the 
case of MLP, were not significantly different from their centralized 
versions (Figure 4). Importantly, the federated learning models based on 
differentiable algorithms explored in this study (MLP and sNDF) achieved 

results comparable to the state-of-the-art performance of non-
differentiable models such as Random Forest and XGBoost, which were 
trained on centralized data and for which federated learning 
implementations have not yet been developed (Supplementary Figure 4 
and Supplementary Table 11). Considered together, these results showed 
the beneficial impact of collaboratively training supervised models across 
different scenarios for the classification of human genetic variants while 
respecting data privacy constraints.
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3.4 Measuring the robustness of centralized and federated 
models against client dropouts

We then evaluated to what extent the performance of centralized and 
federated models would have been affected in the eventual case that a 
given client had not participated in the collaborative process. Figures 4 
and Supplementary Figure 5 allow comparison of such events on the two 
learning algorithms evaluated, MLP and sNDF, respectively, for the two 
independent sets evaluated. In the case of coding and non-coding SNVs, 
the results showed that the federated learning models were consistently 
more resilient to client dropouts than the centralized model counterparts 
(Supplementary Tables 12 – 13). FL models were particularly robust in 

the case of MLP, where they were not significantly affected for most of 
the client drops, and in sharp contrast to the performance drops observed 

in the centralized settings (Figure 4 and Supplementary Figure 5). In the 
case of CNVs, less consistent trends were observed upon client dropouts, 
reflecting stochastic sampling effects as a result of the small sample size 
on both the centralized and federated settings. Thus, while MLP models 
were generally robust to client dropouts in both the centralized and FL 
settings, sNDF showed less resilient to the absence of clients. Considered 
together, our results suggest that federated learning models need 
comparatively smaller training datasets than their centralized model 
counterparts in order to generalize adequately to independent datasets.

Fig. 4.  Performance of centralized and federated MLP models upon client dropouts on two independent test sets. Top and bottom panels show, respectively, the results obtained 

on the first and second independent test (Methods). Boxplots in the panels represent the distribution of AUC ROC values obtained upon 30 different random seeds for model weight 

initialization. Centralized and FL models are colored in blue and green, respectively. Each panel represents the AUC ROC values obtained considering all clients, as well as excluding one 

client at a time. To ease comparison across models, dotted lines represent the median values obtained for the centralized (blue) and federated (green) models considering all clients.

3.5 Assessing the similarity of centralized and federated 
models

In the previous sections we showed that centralized and federated 
models led to overall comparable performances across diverse settings and 
scenarios, and this in spite of their different training process. Here we 
further inquired whether such results reflected a convergence of both 
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approaches into largely redundant models, not only in terms of global 
accuracy, but also in terms of their classification outcomes for each 
specific genetic variant evaluated. To address this question, we evaluated 
the Spearman rank correlation between the pathogenicity scores for each 
genetic variant produced by the centralized and the federated model, for 
each evaluated setting (Supplementary Table 14). The observed rank 
correlation values ranged between 0.92 and 0.97, with p-values < 2.16e-
132 for comparisons involving coding and non-coding SNVs, suggesting 
that models learned in a centralized and federated learning manner were 
largely equivalent for individual variant assessment. In the case of CNVs, 
the similarities between the two approaches were also statistically 
significant across all settings (p-values < 1.36e-25) yet with lower rank 
correlation values, ranging between 0.82 and 0.87. Such values suggest a 
larger divergence between the centralized and federated approaches as 
compared to the SNV scenarios, probably reflecting stochastic sampling 
variance across clients in the federated learning process due to the smaller 
clients’ sample size. 

3.6 Analyzing the influence of genetic variant feature 
distribution on federated learning performance

Motivated by the previous results, we further investigated whether the 
comparable or superior performances observed in FL as compared to 
centralized models were driven by underlying identical or non-identical 
distributions of genetic variant features across the clients participating in 
the training process. It has been hypothesized that FL models may 
generalize better than their centralized counterparts in the presence of non-
identical feature distributions across clients, due to an implicit 
regularization effect introduced by model averaging, similar to the 
benefits achieved through dropout (McMahan et al., 2017). To explore 
such possibility, we first inspected the distribution of variants in the 
training set across an unsupervised low-dimensional representation 
obtained from the variants feature matrices (Supplementary Figure 6, 
Methods). In the case of coding and non-coding SNVs, variants were 
homogeneously distributed across the UMAP space both in terms of their 
clinical label (pathogenic or benign) and of their institutional submitter. In 
the case of CNVs, however, pathogenic variants formed distinctive 

clusters, which generally reflected their client of origin (Supplementary 
Figure 6). Those observations suggest that CNV variants, but not coding 
and non-coding SNVs, might have a non-identical feature distribution 
across participant Institutions involved in the FL experiments. 

To further investigate this possibility, we then generated a pool of 100 
synthetic random partitions of the initial training set across the same 
number of virtual clients, while respecting their original sample size, and 
trained FL models using the optimal hyperparameters on the generated 
partitions (Methods). For execution time limitations, these experiments 
were conducted exclusively on the MLP model. Figure 5 shows the 
histograms representing the distribution of median AUC ROC values 
achieved by the FL models trained in the 100 newly generated training 
sets, and evaluated on the two independent test sets. In the case of coding 
and non-coding SNVs, the results showed that the actual median AUC 
ROC values obtained by the original model on the two independent test 
sets were not significantly different than those obtained by models where 
variants were randomly distributed across clients (z-scores ranging from -
1.05 to 0.80, with normal p-values > 0.05). These observations reflect that 
both coding and non-coding Single Nucleotide variants may not exhibit 
strong non-identical feature distributions. Conversely, for CNVs, the 
original AUC ROC value was significantly lower than the random 
distribution in the case of the first held-out test set (z-score = −3.74, 
normal p-value = 0.74), while no significant difference was observed for 
the second test set. We hypothesize that, in this case, the limited sample 
size of the second test set (96 samples) might have reduced the statistical 
power to detect differences in performance. Nonetheless, the results 
observed on CNVs are in line with the observations from the low-
dimensional representations, both reflecting that the actual CNV data 
partition across clients presented non-identically distributed features, 
probably accentuated by the small clients’ data size. 
The previous results suggest that the advantages observed for federated 
models throughout this work in terms of superior and more robust 
performance, would be driven by the iterative learning process across 
disjoint and partly represented datasets (with client rates < 100%) rather 
than by non-identical feature distribution across clients. As a corollary of 
this result, it may be proposed that, even when a large aggregated training 
dataset is available, mimicking a virtual federated learning through 
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random splits across synthetic clients could lead to performance improvements.
Fig. 5. Distribution of median AUC ROC values obtained by the FL models trained on 100 randomly generated training sets. Top and bottom panels illustrate the histogram of the 

FL models evaluated, respectively, on the first and second independent test set for coding SNVs (left), non-coding SNVs (middle), and CNVs (right). For each histogram we delimit: the 

interquartile range (IQR = Q3 − Q1), representing the range within which the middle 50% of the data lies; the lower bound (Q1 − 1.5 × IQR) and upper bound (Q3 + 1.5 × IQR), for the 

identification of outliers; and the median area under the ROC curve (referred to as the original data) achieved by the FL model trained on the original data split.

4 Discussion
In this work we carried out a proof-of-concept study evaluating whether 

Federated Learning (FL) might be an effective collaborative machine 
learning strategy for the pathogenicity annotation of human genetic 
variants in the context of clinical genomics for rare diseases. To this end, 
we leveraged the publicly available database ClinVar to mimic realistic 
multi-institutional collaborations for the training of supervised ML 
models, with and without data sharing. Our experiments showed that, in 
most cases, FL achieved competitive or superior performance compared 
to collaborative data sharing (CDS) approaches, while also outperforming 
single-institutional models for the majority of participants. We also 
demonstrated that FL generally exhibited greater robustness to the 
removal of a participant’s data from the training set compared to CDS 
approaches. Such results suggest that FL needs relatively smaller datasets 
than CDS approaches to generalize adequately to unseen datasets. Our 
study thus supports FL as a beneficial approach for training supervised 
ML models for the clinical classification of genetic variants across 
multiple institutions, while respecting data privacy constraints. 

Notably, when using Multilayer Perceptron as a learning algorithm, FL 
outperformed CDS approaches in the clinical assessment of coding as well 
as of non-coding SNVs, despite the distributions of genetic variant 
features across the clients participating in the training process being 
identical. Such a result may initially seem counterintuitive, considering 
that a CDS approach benefits from complete data access and centralized 
optimization. However, our findings align with previous studies observing 
a similar trend in biomedical applications. For example, Linardos et al. 
(Linardos et al., 2022) observed that a FL model for cardiac magnetic 
resonance imaging (MRI) diagnosis outperformed its centralized 
counterpart. The authors hypothesized that this behavior could be 
attributed to the model averaging process in each round of FL, which may 
have had a stabilizing effect, leading to improved performance across 
different model initializations. Ogier du Terrail et al. (Ogier du Terrail et 
al., 2022) presented a FL benchmark using seven multi-institutional 
datasets, simulating diverse realistic healthcare settings covering different 
tasks and modalities. Authors found that FL outperformed its centralized 
model counterpart when the ML models were linear and when the training 
set was low-dimensional, tabular data. Based on these studies, we 
speculate that FL outperformed the CDS approach in our case due to 
model averaging and to the characteristics of the training set, which 
consisted of low-dimensional tabular data. Interestingly, the performance 
gap between FL and CDS was more pronounced for MLP, a simpler model 
with fewer parameters, as compared to sNDF. This suggests that federated 
optimization may become more challenging as model complexity and 
number of model parameters increases.

The results obtained through cross-validation (Figure 3) revealed 
additional interesting findings. First, the introduction of batch 
normalization layers to local MLP models had a negative impact, 
damaging the performance of all FL aggregation strategies evaluated. 
While some studies suggested that the use of local batch normalization 
layers can enhance the performance of FL under conditions of data 
heterogeneity (Li et al., 2021; Andreux et al., 2020), other studies point to 
potential drawbacks, especially when there is a great mismatch between 

local and global model statistics (Wang et al., 2024). It is worth noting 
that these studies focused, however, on computer vision applications often 
involving deep learning architectures. In the context of our study, our 
results suggest that incorporating batch normalization layers into shallow 
models, such as a 3-layer MLP, can be counterproductive. Second, using 
only 50% of clients for local training, randomly selected in each round, 
generally resulted in better performance compared to using all clients 
(Supplementary Figure 1). This observation suggests that, by training on 
a different subset of clients in each round, the FL model may avoid 
overfitting to specific clients’ data, improving its generalization 
capabilities. Finally, a corollary of our work is that, even in scenarios with 
full data access to large centralized genetic variant collections, mimicking 
FL training across virtual clients with randomly generated data splits can 
lead to model improvements over their centralized counterparts.

Supervised learning approaches for the clinical assessment of genetic 
variants have extensively relied on centralized curated repositories such 
as ClinVar (Landrum et al., 2014) and Decipher (Firth et al., 2009), among 
others. While these are valuable resources for the community, they 
necessarily exclude sensitive information from the carrier individuals, 
including complete genomic data, clinical history and relevant phenotypic 
information. Thus, as our proof-of-concept study is based on such type of 
centralized repositories, we could only evaluate the beneficial aspects of 
FL models for variant classification that rely exclusively on genomic 
features of the variants, without considering patients’ clinical signs. Yet, 
our study serves as an incentive for the implementation of a FL approach 
in real-word settings that could benefit from the incorporation of 
additional data modalities also requiring data privacy, such as electronic 
health records and medical imagine. However, since our study is based on 
the ClinVar database, it primarily focuses on germline variants and 
Mendelian diseases, and further research is needed to assess whether our 
findings extend to more complex disease contexts. An additional 
limitation of our study is the lack of explicit control for population genetic 
diversity, as ethnicity information is not systematically reported in 
ClinVar. Thus, future implementations of federated learning in clinical 
genomics should account for ancestry-related information to ensure 
comparable model performance across diverse populations.

In our experiments we assumed that clients and server are honest and 
trusted, which means that no party is attempting to disrupt or manipulate 
the FL training process. However, a real implementation of FL would need 
to take into consideration further privacy-preserving guarantees against 
potential malicious attacks, such as attempts to reconstruct the original 
data from model updates (Geiping et al., 2020). Homomorphic encryption 
(Acar et al., 2018) and Differential Privacy (Ziller et al., 2024) can be used 
to secure parameter exchange in FL. Homomorphic encryption allows 
computation to be performed on encrypted data, allowing the clients to 
encrypt the model updates before sending them to the server. The central 
server then aggregates the encrypted local updates, returning an encrypted 
global model to the clients for decryption. Although Homomorphic 
encryption offers strong privacy protections, current implementations are 
computationally expensive, slowing down the FL training process. 
Differential Privacy, on the other hand, adds noise to local updates before 
sending them to the server for model aggregation. However, it is crucial 
to carefully choose the amount and the shape of noise to be added, since 
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excessive noise can degrade model performance, while insufficient noise 
may not provide sufficient privacy protection.

Our work extends to genetic variant assessment the scope of biomedical 
applications for which Federated Learning has proven to be an effective 
strategy for implementing collaborative machine learning approaches 
under data privacy constraints. These findings represent a major novelty 
in the field of clinical genomics and we expect them to encourage the 
adoption of FL to establish secure multi-institutional collaborations for 
human variant interpretation. This, in turn, would lead to more robust ML 
models that benefit not only from larger datasets but, most importantly, 
from more diverse datasets covering a wider range of genetic conditions, 
genetic backgrounds, and clinical manifestations.
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