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1 Dataset composition 
 

The dataset used in our analysis consists of 164 variants from 11 proteins from genes annotated 
as Tier 1 in the Cancer Census Gene list of the COSMIC database (BRCA1, BRD3, BRD4, PIM-
1, PPARg, PTPr, p16, p53), or from other cancer-related genes (BRD2, hFXN, PGK1). Among 
the latter group of genes, BRD2 shares more than 50% identity with the Tier1 gene BRD3, hFXN 
has been implicated in mice tumorigenesis (Thierbach et al., 2005, 2012), and PGK1 is reported 
as a mice candidate cancer causing gene in the CCDG database (Abbott et al., 2015). The 
dataset was collected after extensive literature and databases search for cancer-related 
variants, for which the change in folding free energy difference upon mutation (ΔΔGf) had been 
experimentally determined. When available, for each variant the melting temperature change 
(ΔTm) was also collected. The ΔΔGf and ΔTm values for the variants in the p53 C-terminal 
domain, which were measured in its tetrameric state, were divided by 4. Our dataset is 
composed of variants which are either detected in normal and tumor tissues, or engineered.  
The mutations are classified as highly destabilizing (ΔΔGf>2.0 kcal/mol) or not (ΔΔGf≤2.0 
kcal/mol). A second classification is based on the annotation retrieved in the Cancer Mutation 
Census from COSMIC (Tate et al., 2019). According to such annotation, variants were classified 
as cancer-causing (those annotated as Tiers 1,2,3) or benign (those annotated as “Other”). 
Among the 164 variants collected, only 97 have been annotated in the Cancer Mutation Census 
database. For a better assessment of the performance of Meta-SNP we also considered a 
subset of  82 mutants obtained removing 15 mutants included in the Meta-SNP training set. A 
summary of the composition of our database is reported in Table S1. 
 



	
	

2 Variant effect predictions and classification  
 

The impact of the selected variants on protein stability was predicted using FoldX (Schymkowitz 
et al., 2005), which returns in output the ΔΔGf of folding. In our analysis, we generated 10 
possible models of the mutated structure and calculated the average ΔΔGf value on the 10 
models.  
The pathogenicity of each variant was predicted using Meta-SNP (Capriotti et al., 2013),  a binary 
classifier combining the prediction outputs of 4 state-of-the-art methods, namely PhD-SNP 
(Capriotti et al., 2006), PANTHER (Thomas and Kejariwal, 2004), SIFT (Sim et al., 2012) and 
SNAP (Bromberg and Rost, 2007). The output of the method is a probabilistic score ranging from 
0 to 1.  
The binary classification tasks for both FoldX and Meta-SNP were performed by optimizing the 
thresholds that better discriminated between highly destabilizing (ΔΔGf>2.0 kcal/mol) and not 
destabilizing (ΔΔGf≤2.0 kcal/mol) variants, or between cancer-causing (Tier 1-3) and benign 
(‘Other’) variants.  
 
 
3  Variant classification features 
 

In our analysis, the solvent accessibility of the mutated sites was calculated by using the DSSP 
program (Kabsch and Sander, 1983). The Relative Solvent Accessibility (RSA) of each amino 
acid was obtained by normalizing its solvent accessibility with the maximum solvent accessibility 
of the same amino acid. In this work we used  the estimation of the maximum accessibility of the 
amino acids calculated by Rost and Sander (Rost and Sander, 1994).  
The conservation score of the wild-type residue (fWT) is provided in the output of the Meta-SNP 
server, which calculates a multiple sequence alignment of the homolog proteins retrieved by the 
BLAST algorithm (Altschul et al., 1997) on the UniRef90 database (Suzek et al., 2007), as 
suggested in the PhD-SNP article (Capriotti et al., 2006). The fWT is the fraction of the wild-type 
residue among all the aligned sequences in the mutated site. 
 

 
3 Measures of performance 
 

Performance in regression mode 
For evaluating the performance of FoldX in the regression task, we compared the predicted and 
experimental values of the variation of folding free energy change (ΔΔGf) upon amino acid 
substitution. The standard scoring values calculated in our assessment are the Pearson, 
Spearman and Kendall-Tau correlation coefficients (rP, rS, and rKT respectively), the root mean 
square error (RMSE) and the mean absolute error (MAE). They are defined as follows: 
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where yi and ȳi and are the experimental and predicted ΔΔGf values, respectively, r ( yi ) and  r ( 
ȳi ) their ranks. 

 

Performance of the binary classifiers 

In our analysis, we assessed the performance of FoldX and Meta-SNP as binary classifiers for 
predicting highly destabilizing variants (ΔΔGf>2.0 kcal/mol) and Tier 1-3 variants from the CMC 
database. In all the performance measures, we labelled as positive the highly destabilizing or 
the Tier 1-3 variants, and as negative those variants with ΔΔGf≤2.0 kcal/mol or annotated as 
“Other”. The predictors performances were evaluated using the following metrics:  
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where TN and FN are the true and false negative, TP and FP are the true and false positive, 
PPV and NPV are the positive and negative predicted values, and TPR and TNR are true 
positive and negative rates. The F1 score is the harmonic mean between PPV and TPR, and 
Q2 is the overall accuracy.  

The Matthew’s correlation coefficient MCC was computed as: 
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The Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) was calculated by 
plotting the True Positive Rate (TPR) as a function of the False Positive Rate (FPR=1-TNR) at 
different classification thresholds. 

For a better generalization of the threshold optimization process in the prediction of high 
destabilizing and putative cancer-driving variants, we estimated the performance of the methods 
using a 5-fold cross-validation process. The reported optimal thresholds and the measures of the 
performance represent the average values obtained on the 5 subsets.    



	
	

Supplementary Table 

 

Protein PDB  Chain ΔΔGf>2.0 
kcal/mol 

ΔΔGf≤2.0 
kcal/mol NΔΔG CMC 

Tier 1-3 
CMC 

‘Other’ NCMC 

ALL − − 53 111 164 24 73 97 
p53 3SAK A 13 45 58 3 27 30 
p53 2OCJ A 15 27 42 15 17 32 
BRCA 1JNX X 9 15 24 4 6 10 
hFXN 1EKG A 4 3 7 0 7 7 
PGK1 2XE7 A 3 4 7 0 0 0 
PPARg 1PRG A 0 6 6 1 1 2 
BRD2(1) 4ALG A 5 0 5 0 4 4 
PIM-1 1XWS A 4 0 4 0 4 4 
p16 1DC2 A 0 3 3 1 2 3 
PTPr 2OOQ A 0 3 3 0 0 0 
BRD2(2) 3ONI A 0 2 2 0 2 2 
BRD3(2) 3S92 A 0 1 1 0 1 1 
BRD4(1) 3MXF A 0 1 1 0 1 1 
BRD4(2) 2OUO A 0 1 1 0 1 1 

 
Table S1. Composition of the dataset according to the number of variants in each protein and 
class. In the training set of Meta-SNP were present 10 mutations from p53, 3 mutations from 
BRCA1 and 2 mutations from PIM1. 

 
 

Protein rP p-valueP RMSE MAE rS  p-valueS  rKT p-valueKT  N 
ALL 0.502 7.20E-12 2.09 1.39 0.543 6.20E-14 0.372 1.70E-12 164 
ALL* 0.558 9.90E-15 1.82 1.32 0.542 8.30E-14 0.373 1.80E-12 163 
p53 (3SAK) 0.579 1.90E-06 1.20 0.97 0.572 2.80E-06 0.380 2.70E-05 58 
p53 (2OCJ) 0.756 7.20E-09 1.78 1.26 0.710 1.40E-07 0.490 4.80E-06 42 
BRCA1 0.465 2.20E-02 3.10 1.65 0.723 6.70E-05 0.500 4.20E-04 24 
BRCA1* 0.739 5.70E-05 1.52 1.14 0.733 6.90E-05 0.526 2.80E-04 23 
BRD 0.176 6.30E-01 3.04 2.64 0.309 3.90E-01 0.244 3.80E-01 10 
hFXN 0.651 1.10E-01 1.64 1.31 0.429 3.40E-01 0.333 3.80E-01 7 
PGK1 0.791 3.40E-02 1.44 1.19 0.500 2.50E-01 0.333 3.80E-01 7 
PPARg 0.475 3.40E-01 2.84 1.70 0.429 4.00E-01 0.200 7.20E-01 6 
PIM-1 -0.603 4.00E-01 3.51 3.24 -0.200 8.00E-01 0.000 1.30E+00 4 
PTPr 0.813 4.00E-01 2.40 1.76 0.500 6.70E-01 0.333 1.00E+00 3 
p16 -0.570 6.10E-01 3.09 2.43 -1.000 0.00E+00 -1.000 3.30E-01 3 

 
Table S2. Performance of FoldX in the prediction of the ΔΔGf values. The Pearson, Spearman and 
Kendall-Tau correlation coefficients (rP, rS and rKT), as well as the Root Mean Square Error (RMSE) and 
the Mean Absolute Error (MAE), expressed in kcal/mol. are defined in Supplementary Materials. *Fitting 
after removing the outlier variant BRCA1 p.G1788V.  



	
	

 
Protein TH Q2 TNR NPV TPR PPV MCC F1 AUC NHD/NT 
ALL 1.23 0.774 0.757 0.895 0.824 0.631 0.552 0.705 0.847 53/164 
p53 (3SAK) 1.30 0.741 0.736 0.917 0.816 0.455 0.445 0.558 0.832 13/58 
p53 (2OCJ) 2.31 0.905 0.917 0.946 0.810 0.908 0.781 0.821 0.948 15/42 
BRCA1* 1.23 0.833 0.800 0.923 0.889 0.727 0.669 0.800 0.904 9/24 

 
Table S3. Performance of FoldX in the prediction of highly destabilizing variants. Highly destabilizing 
variants have ΔΔGf>2.0 kcal/mol. The measures of performance are defined in the Supplementary 
Materials. TH is the optimized threshold for maximizing both TNR and TPR. NHD and NT represent 
the highly destabilizing and total number of variants, respectively. The optimization process was 
performed using a 5-fold cross-validation procedure. The measures of performance represent the 
average values on the 5 subsets. *For BRCA1 the performance was calculated using the 
optimization threshold obtained on the full set because the number of mutations is too small. 

 
 
 
 
 
 
 

Prediction task TH Q2 TNR NPV TPR PPV MCC F1 AUC NP/NT 
Meta-SNP (ΔΔG>2) 0.66 0.732 0.763 0.832 0.646 0.565 0.402 0.595 0.737 53/164 
Meta-SNP§ (Tier 1-3)  0.71 0.768 0.787 0.931 0.747 0.342 0.370 0.437 0.781 12/82 
FoldX (Tier 1-3)  2.69 0.732 0.818 0.833 0.493 0.533 0.333 0.471 0.733 24/97 

 
Table S4. Performance of FoldX and Meta-SNP in the prediction of highly destabilizing and causative variants. 
Highly destabilizing variants have ΔΔGf>2.0 kcal/mol. Causative variants are annotated as Tier 1-3 in the 
COSMIC database. The measures of performance are defined in the Supplementary Materials. TH is the 
optimized threshold for maximizing both TNR and TPR. NP and NT represent the positive (P) and total (T) 
number of variants, respectively. The Positive variants are either highly destabilizing (ΔΔGf>2.0 kcal/mol) or 
Tier 1-3 variants. § Performance calculated removing mutation 15 mutations included in the training set of 
Meta-SNP. The optimization process was performed using a 5-fold cross-validation procedure. The measures 
of performance represent the average values on the 5 subsets. 

 
 
 
 
 
 
 
 
 
 
 
  



	
	

Supplementary Figure 
 

 
 
Fig. S1. Enrichment in Tier 1-3 variants in the subset of mutants with predicted 
ΔΔGf > 2.0 kcal/mol and Meta-SNP output >0.5 (light red). The opposite region 
(light blue) is depleted of Tier 1-3 variants. P-values are calculated by using a 
binomial distribution with a success probability of 0.247. Five hotspot mutants are 
highlighted with black circles.  

 
 
 
 
Supplementary File 1 
 
Dataset of 164 mutations in 11 proteins. For each mutation, the following information is reported: 
The protein name  (PROT),  the sequence mutant (SMUT), the protein structure identifier (PDB), 
the structure mutation (MUT), the relative solvent accessibility (RSA), the frequency of the wild-
type residue in the protein sequence profile (FWT), the predicted ΔΔGf by FoldX (FOLDX), its 
standard deviation (STDEV), the output of Meta-SNP (METASNP), the experimental ΔΔGf and 
ΔTm, the annotation on the Cancer Mutation Census (CMC), the number of mutated tissue 
samples (CMS), the publication identifier reporting the experimental ΔΔGf and ΔTm (PMID) and 
the tumor tissues in which the mutations are detected (TISSUE). The experimental ΔΔGf and 
ΔTm values for the p53 C-terminal tetramerization domain (3SAK) were divided by 4.   
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