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Abstract

The study of protein folding plays a crucial role in improving our understanding of protein function and of
the relationship between genetics and phenotypes. In particular, understanding the thermodynamics and
kinetics of the folding process is important for uncovering the mechanisms behind human disorders
caused by protein misfolding. To address this issue, it is essential to collect and curate experimental
kinetic and thermodynamic data on protein folding. K-Pro is a new database designed for collecting
and storing experimental kinetic data on monomeric proteins, with a two-state folding mechanism. With
1,529 records from 62 proteins corresponding to 65 structures, K-Pro contains various kinetic parameters
such as the logarithm of the folding and unfolding rates, Tanford’s b and the / values. When available, the
database also includes thermodynamic parameters associated with the kinetic data. K-Pro features a
user-friendly interface that allows browsing and downloading kinetic data of interest. The graphical inter-
face provides a visual representation of the protein and mutants, and it is cross-linked to key databases
such as PDB, UniProt, and PubMed. K-Pro is open and freely accessible through https://folding.biofold.
org/k-pro and supports the latest versions of popular browsers.
� 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://crea-

tivecommons.org/licenses/by-nc-nd/4.0/).
Introduction

The protein folding problem encompasses three
key aspects: understanding the thermodynamics
of the process, determining the protein folding
speed to address the Levinthal’s puzzle, and
developing a computational method for structure
prediction.1,2 While significant progress has been
made in the prediction of protein structure with the
advent of AlphaFold3 and the Levinthal’s Paradox
has been solved for single domain globular pro-
teins,4,5 the accurate prediction of the folding rate
of proteins and their mutants remains a challenging
task.6 Accurate theoretical models that can predict
folded protein stability and the kinetics of the folding
process,7–12 are crucial for enhancing our under-
standing of disease mechanisms that often involve
rs. Published by Elsevier Ltd.This is an open ac
protein unfolding or aggregation.13,14 The basic
hypothesis is that variations in the thermodynamics
and kinetics of the folding process may induce pro-
tein loss or excess, and/or promote the formation of
potentially damaging aggregates.15–17 The connec-
tion between variations in protein stability and
human disorders18 has enhanced the collection of
experimental data on protein folding thermodynam-
ics and the implementation of methods for predict-
ing the impact of mutants on protein stability.19,20

In contrast, databases for experimental data on
folding kinetics are not frequently updated or
properly maintained.21–24 Although a few methods
have been developed for predicting folding/unfold-
ing rates25–28 and their variation upon mutation,29,30

the lack of curated databases collecting kinetic data
hampers the development and validation of such
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algorithms. To address this issue, we introduce K-
Pro, a new database that collects experimental data
on the folding kinetics of proteins and mutants.
K-Pro database focuses on proteins which show

convincing experimental evidence of undergoing a
two-state folding process, i.e. absence of
kinetically detectable intermediates, as outlined
e.g. in 31. In the current version, K-Pro contains
1,529 records of kinetic data from 62 proteins corre-
sponding to 65 structures, extracted from previously
developed databases21–24 and datasets10,32,33 and
from recently scanned literature using ThermoS-
can.34 In the present work, this semi-automatic
method was only used to facilitate the search for
PubMed articles containing both thermodynamic
and kinetic experiemntal data on protein folding.
The absence of some kinetic data relative to

previous datasets can be attributed to slightly
more stringent criteria applied for their evaluation
and selection, which exclude repeat proteins, as
well as cases with inconsistent or insufficient
experimental evidence for the two-state nature of
the protein.
The database features a user-friendly web

interface for browsing and downloading, with
information from UniProt,35 Protein Data Bank
(PDB),36 and PubMed, cross-linked for each record.
Additionally, when the link to the mutation identifier
is clicked, a graphical interface allows for the visual-
ization of the three-dimensional structure of the
reported proteins. K-Pro is freely accessible without
any registration requirements.
Content of the database

K-Pro provides experimental kinetic data on both
wild-type and mutant proteins, sourced from the
literature. These kinetic parameters have been
experimentally determined through the use of
three main methods: stopped-flow, continuous-
flow, and T-jump. Stopped-flow is favored for
capturing the rapid dynamics of protein folding, as
it provides high temporal resolution, while
continuous-flow is better suited for mimicking the
conditions of the reaction and monitoring it over a
longer period of time. The T-jump method, on the
other hand, measures the kinetics of protein
folding by rapidly changing the temperature of the
reaction and monitoring it over time. The above
methods typically monitor the folding reaction by
measuring changes in the fluorescence or
absorbance of a specific chromophore. The main
kinetic parameters stored in the database are ln
(kf) and ln(ku), i.e. the logarithms of the unfolding
and folding rate constants, respectively. When
available, thermodynamic parameters obtained
from the associated equilibrium experiments are
also collected.
In detail, each K-Pro entry is identified by a unique

accession number, which includes the following
information:
2

1. Protein Sequence: protein name, source, UniProt ID,
protein length, wild-type or mutated UniProt
sequence.

2. Protein Structure: PDB codes for the wild-type struc-
ture (if available), chain name, and mutation details
(wild-type and mutant residues along with mutated
position). In general, for each protein, the PDB code
indicated by the authors of the kinetic measurements
was maintained, except in a few cases, in which a
crystal structure with a better resolution, and higher
coverage, has been published in the meantime. For
records with mutation data, the relative solvent
accessibility (RSA) and secondary structure (Sec.
Str.) of the wild-type residue, calculated with the dssp
program,37 are also included.

3. Experimental conditions: temperature, pH, buffer,
added ions name and concentration, additives, and
measurement method.

4. Literature information: name of the author(s), title of
the article and journal, year of publication and
PubMed identifier.

5. Kinetic and thermodynamic data: Logarithm of the
folding and unfolding rates in water (ln(kf

H2O), ln(ku-
H2O)) and/or in the presence of denaturant (ln(kf

DEN),
ln(ku

DEN)), the equilibrium free energy change at zero
denaturant (DGH2O) (derived from the kinetic data,
DG_KINH2O, or from the associated equilibrium mea-
surements, DG_EQH2O), the folding and unfolding
slopes of the Chevron plot (mf, mu), the concentration
of denaturant at 50% of unfolded protein (Cm), the
Tanford’s b38 and the folding / value.39 For mutants,
the variation of the logarithm of the folding and
unfolding rates in water (Dln(kf

H2O), Dln(ku
H2O)) and

the variation of the free energy change of unfolding
in water (DDGH2O), relative to wild-type, are also
reported.

The UniProt and PDB identifiers are used to
aggregate additional information relative to the
enzymatic activity, the protein family and structural
class. When available, links to the Enzyme
Classification40, PFAM41 and CATH42 identifiers
are provided.
If the experimental study was carried out taking as

reference a mutated version of the original wild-type
protein, such information is reported in the
background_mut field.
Database implementation and
webserver interface

The K-Pro interface, implemented with HTML/
JavaScript, processes the user requests, and
queries a backend NoSQL database,
implemented with MongoDB, which stores data as
documents similar to JSON objects. Once the
information is retrieved from the database, the
server formats a webpage which uses the
DataTable plug-in43 for jQuery library for displaying
the output table. The default view of the output table
shows, for each record, 12 columns (UniProt, Struc-
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ture, Chain, Mutation, Sec. Str., RSA, T, pH, ln(kf-
H2O), Dln(kf

H2O), ln(ku
H2O), Dln(ku

H2O)). The UniProt
and PDB identifiers are linked to the relative web-
pages of the corresponding databases. When the
three-dimensional structure of a protein is not avail-
able, a link to the structure predicted with AlphaFold
is provided. Furthermore, the link of the mutation
field allows the visualization of the three-
dimensional structure of the protein and the muta-
tion environment through the JSmol interface.44 A
plus sign button (+) shows all pieces of information
associated with each measure. For direct access to
the referenced publication, a link to the PubMed
database is included.
The K-Pro webserver also implements a REST

API backend, accessible through the
https://folding.biofold.org/k-pro/api URL. The API
interface is implemented by combining flask
Welcome to Flask – Flask Documentation,45 a
python framework for web applications, with swag-
ger,46 a tool for designing and documenting REST
API. Queries through the API are organized in 4
groups which are designed to retrieve data from
specific proteins, mutation types, experiments,
and publications. The API documentation is linked
to the main webpage.
Database statistics

The K-Pro database contains 1,529 entries from
62 two-state folding proteins, corresponding to 65
structures. The mapping between protein
sequences and structures always exhibits some
exceptions. The discrepancy in the numbers
arises from the presence of multiple domains
belonging to the same protein and mutants linked
to different protein structures. The majority of the
kinetic data records are from single-point mutants,
accounting for approximately 87.7% of the
database, with the remaining 12% split between
wild-type (6%) and multiple-point (6.3%)
mutations. For the 1,341 single-point mutants, a
structural analysis shows that 43% of the mutated
residues were in a helical conformation, 29% were
in beta regions, and 27% were in a coil
conformation. Based on the fraction of the surface
of the wild-type residue exposed to solvent (RSA),
the mutated sites were then divided into three
groups: buried (RSA � 10), intermediate
(10 < RSA < 40), and exposed (RSA � 40).
According to this classification, buried, exposed
and intermediate sites each makes up �33% of
the total. To assess the impact of single amino
acid substitutions on protein folding kinetics, the
distribution of the variations in the logarithms of
folding and unfolding rates was analyzed. The
data collected in K-Pro suggest that the majority of
mutations slow down the folding process,
decreasing the average logarithm of kf

H2O by
3

approximately 0.6, and accelerate the unfolding
process, increasing the logarithm of ku

H2O by
approximately 1.9. In both cases, the standard
deviation of the distribution is similar to the mean,
reaching 0.9 for Dln(kf

H2O) and 1.8 for Dln(ku
H2O).

The difference between Dln(kf
H2O) and Dln(ku

H2O),
which is proportional to the variation of Gibbs free
energy change of the unfolding process upon
mutation, mostly results in a negative value, in
agreement with the observation that mutations
tend on average to have a destabilizing effect on
the protein structures.47 The results of such analy-
sis are summarized in Figure 1.
The distributions of K-Pro entries based on

protein length and their UniProt and PDB
identifiers are summarized in Tables S4–S6. The
composition of the databases in terms of structural
and functional classification described by the
PFAM, CATH and the enzymatic activity (EC
number) are reported in Tables S7–S9.
At the current stage, K-Pro collects additional

�500 data on mutants relative to the previously
selected datasets32,33 and a similar number of
data on wild-type proteins as does PFDB.24 Fur-
thermore, K-Pro includes data on �100 multiple
site mutants. From the user standpoint, K-Pro
features an intuitive interface that allows
querying the database by command line and the
direct visualization of both the protein structures
and the structural environment of the mutated
sites.
Data retrieval

For querying the database, the K-Pro web
interface implements both basic and advanced
searches. The basic mode allows users to submit
simple queries using UniProt and PDB identifiers,
and to select subsets of different types of
mutations (wild-type, single, double, and multiple).
The search for kinetic data linked with alternative
PDB structures can be performed by selecting the
option “Match UniProt”. This option allows the
retrieval of data from all the PDB structures
associated with the same UniProt ID. The
advanced interface enables more refined queries,
based on the experimental techniques used to
measure the kinetic constants, on the
experimental conditions, and on publication
information. In the output webpage, the selected
data are displayed on a table with expandable
records, which includes the kinetics data. On the
top of the page, an output.tsv link allows
downloading the result of your query in tab
separated format. Queries can also be performed
through the command line, by running curl and
accessing specific API endpoints. An example of
how to run a search via the command line is
provided on the API documentation webpage. The

https://folding.biofold.org/k-pro/api


Fig. 1. K-Pro statistics: (A) Frequencies of wild-type, single and multiple mutants in the 1,529 records of K-Pro. (B)
Frequencies of the secondary structure of the wild-type residue in 1,327 single mutants. (C) Frequencies of the buried
(RSA � 10), intermediate (10 < RSA < 40) and exposed (RSA � 40) sites for the single mutants. (D)–(F) Distributions
of the Dln(kf

H2O), Dln(ku
H2O) and their difference (Dln(kf

H2O) � Dln(ku
H2O)) for single-point mutants. The complete

statistics on data in panels (A)–(C) are reported in Tables S1–S3.

Fig. 2. Web interface of the K-Pro database. Top-left corner: K-Pro searches through the standard web interface
or by command line. Bottom-left: an example of querying the database through the REST API endpoint. On the right,
the K-Pro output is shown, including the visualization of the 3D protein structure.
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server returns its output in JSON format, which is a
commonly used data exchange format, known for
its readability and ease of parsing by both humans
and machines. Figure 2 highlights the main
features of the K-Pro web interface and displays
an example of output.
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